Robotic jellyfish to patrol oceans, clean oil spills, detect pollutants

principles of nature,” Priya said of the jellyfish.

The idea for a robotic jellyfish did not originate at Virginia Tech, but rather the U.S. Naval Undersea Warfare Center and the Office of Naval Research. Virginia Tech, is teaming with four U.S. universities on the multi-year, $5 million project: University of Texas at Dallas is handling nanotechnology based actuators and sensors; Providence College in Rhode Island is handling biological studies, University of California, Los Angeles, is handling electrostatic and optical sensing/controls, and Stanford University is overseeing chemical and pressure sensing. Virginia Tech is building the jellyfish body models, integrating fluid mechanics and developing control systems. Several other major U.S. universities and industries also are on the project, as well as collaborators and advisory board members.

The release notes that the project has been in the works for nearly four years now. Several more years of work remain on the project before any models are released for military reconnaissance or object-tracking operations, be it with cameras, sensors, or other devices.

Other entrepreneurial uses abound for the RoboJelly. “The robots could be used to study aquatic life, map ocean floors, monitor ocean currents, monitor water quality, [or to] monitor sharks,” said Alex Villanueva of St-Jacques, New-Brunswick, Canada, a doctoral student in mechanical engineering working under Priya. Other ideas: Detecting ocean pollutants, to, possibly, being used as clean-up filters during another oil spill similar to the Deepwater Horizon melee during the summer of 2010 in the Gulf of Mexico.

“The interesting part of the jellyfish research is that it is so open. No one had done research on a jellyfish vehicle to the extend we have. This allows for a lot of freedom and creativity in our design as opposed to optimization type of work which can be very boring,” said Villanueva.

The smaller models are being developed to be powered by hydrogen, naturally abundant in water, which is a huge step in autonomous craft. The larger models may be operated by electric batteries built into the robotic creature. In both cases, the jellyfish must be able to operate on their own for months or longer at a time as engineers likely won’t be able to capture and repair the robots, or replace power sources, Priya said.

“Our biologists have been studying tens of different species of jellyfish with variety of form factors grouped as ‘prolate’ or ‘oblate’ found all around the world,” Priya said. “Most of these species adopt either rowing or jetting form of propulsion. We are investigating both these propulsion mechanisms.”

Building the robotic jellyfish is a true example of interdisciplinary research activity, said Priya, listing off materials scientists, mechanical engineers, biologist, chemist, physicist, electrical engineers, and ocean engineers as being involved in the ongoing project.

“It’s very exciting when everything comes together and we can create experimental models that can surpass millions of years of evolution,” he said. “Nature has done great job in designing propulsion systems but it is slow and tedious process. On the other hand, current status of technology allows us to create high performance systems in matter of few months.”