Sea-level records reveal tight correlation between ice volume and polar temperature

other period than the end-of-ice age ‘terminations/deglaciations.’ Although it is always hard to step from palaeo reconstructions to future projections, it suggests that when significant ice-volume adjustments happen, they are rarely slow.

Ice sheet responses to a change in climate forcing are like the responses of heavy freight trains to firing up the locomotive. They are hard to set in motion (slow to ‘spin up’), but once they are reacting, they will be equally slow to ‘spin down.’ So a lag of a few centuries is worrisome, because we have been warming up the climate for 150-160 years now. If the natural relationship (when changes in climate were slower than today) also holds for the very fast changes in climate today, then we are coming into that ‘window’ of time where we may expect to start seeing some unprecedented responses in the large ice sheets. This then may tie in with observations of the past decade or so of large ice-shelf collapses around Antarctica and Greenland, the major melt-area expansion over Greenland, changes in the flow speed of major ice streams (both Antarctica and Greenland), and increasing ice-mass loss over West Antarctica/the Antarctic Peninsula and Greenland.

We cannot say whether this proves the case, but at least the time delay of the modern ice-sheet responses relative to climate change would seem to agree with the response timescales we have now found in the palaeo-record.”

Co-author Christopher Bronk Ramsey, from Oxford University, who helped with radiocarbon dating on the project and developed some of the age-modeling techniques used, adds: “What is new here is that our dating of the marine sediment is much more direct. This gives us far more accurate age profiles for the sedimentary sequences, which in turn provides valuable insight into the way the earth system has worked in the past.”

The study, which is published in the latest issue of Nature, also hints that temperatures over Greenland changed virtually simultaneously with ice volume, whereas temperatures over Antarctica were leading ice-volume change by up to 700 years. Professor Rohling explains why this may be the case:

Ice volume is related to ice area, and ice is very reflective. So a large ice volume/area reflects a lot of incoming solar radiation. When the ice volume/area reduces, less incoming radiation is reflected, which leads to regional warming. Atmospheric temperature has little inertia, so it will respond very quickly to ice-volume changes.

Our observations suggest that the Greenland temperature changes may largely be regional responses to changes in ice volume (at that time over North America and also Eurasia). In contrast, the Antarctic relationship suggests that temperature changes as recorded in Antarctic ice cores may have been driving the ice-volume changes. Possibly, the Antarctic temperature changes reflect the fundamental underlying global temperature changes that drove the ice-volume changes, while the Greenland temperature record primarily represents a regional temperature response to the changing ice volumes. These are intriguing hints at fundamental aspects of the Earth System’s response to climate change, which merit further investigation.”

— Read more in K. M. Grant et al., “Rapid coupling between ice volume and polar temperature over the past 150,000 years,” Nature (14 November 2012) (doi:10.1038/nature11593)