Synthetic fuels could entirely eliminate U.S. need for crude oil, create new economy

director and a 1981 Princeton alumna. “There are ways for the system to be more integrated and much more efficient.”

The paper was written by Vern Weekman, one of Floudas’ co-researchers. Weekman, a lecturer at Princeton, is the former director of the Mobil Central Research Laboratories and a past president of AIChE.

Weekman said the main reason the industry has not embraced synthetic fuels has been cost. Although he said the economics are “still on the edge,” Weekman noted that rising prices for crude oil and improvements in the efficiency of synthetic fuel production have made the process far more viable than before.

The main reason we wrote the paper was to get the planning agencies — the national academies, the Department of Energy, the Environmental Protection Agency, the Defense Department — thinking about this,” Weekman said. He added that it was important that the agencies consider “this key link of using chemical processes to produce conventional fuels.”

The release notes that in the Princeton research, Floudas’s team found that synthetic fuel plants could produce gasoline, diesel, and aviation fuels at competitive prices, depending on the price of crude oil and the type of feedstock used to create the synthetic fuel. About two-thirds of crude oil consumed by the United States is used for transportation fuel, according to the federal Energy Information Administration (EIA). The EIA said the United States imports about 45 percent of its annual crude oil consumption.

Even including the capital costs, synthetic fuels can still be profitable,” said Richard Baliban, a chemical and biological engineering graduate student who graduated in 2012 and was the lead author on several of the team’s papers. “As long as crude oil is between $60 and $100 per barrel, these processes are competitive depending on the feedstock,” he said.

The core of the plan is a technique that uses heat and chemistry to create gasoline and other liquid fuels from high-carbon feedstock ranging from coal to switchgrass, a native North American grass common to the Great Plains. The method, called the Fischer-Tropsch process, was developed in Germany in the 1920s as a way to convert coal to liquid fuels.

The chemistry is complicated, but it basically takes the carbon and hydrogen from the feedstock and reassembles them into the complex chains that make up fuels like gasoline and diesel.

Essentially, the feedstock material is heated to 1,000 to 1,300 degrees Celsius and converted to gas, and using