WaterRising temperatures threaten Salt Lake City’s water supply

Published 4 November 2013

In an example of the challenges water-strapped Western cities will face in a warming world, new research shows that every degree Fahrenheit of warming in the Salt Lake City region could mean a 1.8 to 6.5 percent drop in the annual flow of streams that provide water to the city. By midcentury, warming Western temperatures may mean that some of the creeks and streams that help slake Salt Lake City’s thirst will dry up several weeks earlier in the summer and fall.

Map of Salt Lake City's watershed // Source: noaa.gov

In an example of the challenges water-strapped Western cities will face in a warming world, new research shows that every degree Fahrenheit of warming in the Salt Lake City region could mean a 1.8 to 6.5 percent drop in the annual flow of streams that provide water to the city.

By midcentury, warming Western temperatures may mean that some of the creeks and streams that help slake Salt Lake City’s thirst will dry up several weeks earlier in the summer and fall, according to the new paper, published today in the journal Earth Interactions. The findings may help regional planners make choices about long-term investments, including water storage and even land-protection policies.

“Many Western water suppliers are aware that climate change will have impacts, but they don’t have detailed information that can help them plan for the future,” said lead author Tim Bardsley, with NOAA’s Cooperative Institute for Research in Environmental Sciences (CIRES) at the University of Colorado Boulder. “Because our research team included hydrologists, climate scientists and water utility experts, we could dig into the issues that mattered most to the operators responsible for making sure clean water flows through taps and sprinklers without interruption.”

A University of Colorado Boulder release reports that Bardsley works for the CIRES Western Water Assessment, from the NOAA Colorado Basin River Forecast Center in Salt Lake City. For the new paper, he worked closely with colleagues from the city’s water utility, the National Center for Atmospheric Research (NCAR), NOAA’s Earth System Research Laboratory and the University of Utah.

The team relied on climate model projections of temperature and precipitation in the area, historical data analysis, and a detailed understanding of the region from which the city utility obtains water. The study also used NOAA streamflow forecasting models that provide information for Salt Lake City’s current water operations and management.

The picture that emerged was similar, in some ways, to previous research on the water in the Interior West: Warmer temperatures alone will cause more of the region’s precipitation to fall as rain than snow, leading to earlier runoff and less water in creeks and streams in the late summer and fall.

“Many snow-dependent regions follow a consistent pattern in responding to warming, but it’s important to drill down further to understand the sensitivity of watersheds that matter for individual water supply systems,” said NCAR’s Andy Wood, a co-author.

The specifics in the new