HurricanesFuture hurricanes: Stronger, slower, wetter

Published 22 May 2018

Scientists have developed a detailed analysis of how twenty-two recent hurricanes would be different if they formed under the conditions predicted for the late twenty-first century. While each storm’s transformation would be unique, on balance, the hurricanes would become a little stronger, a little slower-moving, and a lot wetter.

Scientists have developed a detailed analysis of how twenty-two recent hurricanes would be different if they formed under the conditions predicted for the late twenty-first century.

While each storm’s transformation would be unique, on balance, the hurricanes would become a little stronger, a little slower-moving, and a lot wetter.

In one example, Hurricane Ike — which killed more than 100 people and devastated parts of the U.S. Gulf Coast in 2008 — could have 13 percent stronger winds, move 17 percent slower, and be 34 percent wetter if it formed in a future, warmer climate.

Other storms could become slightly weaker (for example, Hurricane Ernesto) or move slightly faster (such as Hurricane Gustav). None would become drier. The rainfall rate of simulated future storms would increase by an average of 24 percent.

NSF says that the study, led by scientists at the National Center for Atmospheric Research (NCAR) and published in the Journal of Climate, compares high-resolution computer simulations of more than twenty historical, named Atlantic storms with a second set of simulations that are identical but for a warmer, wetter climate that’s consistent with the average scientific projections for the end of the century.

A future with Hurricane Harvey-like rains
“Our research suggests that future hurricanes could drop significantly more rain,” said NCAR scientist Ethan Gutmann, who led the study. “Hurricane Harvey demonstrated last year just how dangerous that can be.”

Harvey produced more than four feet of rain in some locations, breaking records and causing devastating flooding across the Houston area.

The research was funded by the National Science Foundation (NSF), which is NCAR’s sponsor, and by DNV GL (Det Norske Veritas Germanischer Lloyd), a global quality assurance and risk management company.

“This study shows that the number of strong hurricanes, as a percent of total hurricanes each year, may increase,” said Ed Bensman, a program director in NSF’s Division of Atmospheric and Geospace Sciences, which supported the study. “With increasing development along coastlines, that has important implications for future storm damage.”

Tapping a vast dataset to see storms
With more people and businesses relocating to coastal regions, the potential influence of environmental change on hurricanes has significant implications for public safety and the economy.

Last year’s hurricane season, which caused an estimated $215 billion in losses according to reinsurance company Munich RE, was