Encryption, hacking | Homeland Security Newswire

EncryptionClosing security hole in popular encryption software

Published 10 August 2018

Cybersecurity researchers have helped close a security vulnerability that could have allowed hackers to steal encryption keys from a popular security package by briefly listening in on unintended “side channel” signals from smartphones.

Cybersecurity researchers at the Georgia Institute of Technology have helped close a security vulnerability that could have allowed hackers to steal encryption keys from a popular security package by briefly listening in on unintended “side channel” signals from smartphones.

The attack, which was reported to software developers before it was publicized, took advantage of programming that was, ironically, designed to provide better security. The attack used intercepted electromagnetic signals from the phones that could have been analyzed using a small portable device costing less than a thousand dollars. Unlike earlier intercept attempts that required analyzing many logins, the “One & Done” attack was carried out by eavesdropping on just one decryption cycle.

“This is something that could be done at an airport to steal people’s information without arousing suspicion and makes the so-called ‘coffee shop attack’ much more realistic,” said Milos Prvulovic, associate chair of Georgia Tech’s School of Computer Science. “The designers of encryption software now have another issue that they need to take into account because continuous snooping over long periods of time would no longer be required to steal this information.”

Georgia Tech says that the side channel attack is believed to be the first to retrieve the secret exponent of an encryption key in a modern version of OpenSSL without relying on the cache organization and/or timing. OpenSSL is a popular encryption program used for secure interactions on websites and for signature authentication. The attack showed that a single recording of a cryptography key trace was sufficient to break 2048 bits of a private RSA key. 

Results of the research, which was supported in part by the National Science Foundation, the Defense Advanced Research Projects Agency (DARPA), and the Air Force Research Laboratory (AFRL) will be presented at the 27th USENIX Security Symposium16 August in Baltimore.

After successfully attacking the phones and an embedded system board – which all used ARM processors – the researchers proposed a fix for the vulnerability, which was adopted in versions of the software made available in May.