Better protectionProtecting U.S. Energy Grid and Nuclear Weapons Systems

Published 25 March 2020

To deter attempts to disable U.S. electrical utilities and to defend U.S. nuclear weapon systems from evolving technological threats, Sandia researchers have begun two multiyear initiatives to strengthen U.S. responses.

To deter attempts to disable U.S. electrical utilities and to defend U.S. nuclear weapon systems from evolving technological threats, Sandia National Laboratories has begun two multiyear initiatives to strengthen U.S. responses.

One is focused on defending large U.S. electrical utility systems from potential attacks by hostile nations, as well as from damage inflicted by extreme natural disasters like hurricanes and solar flares. The Resilient Energy Systems campaign, a multi-year research portfolio with up to $40 million in total funding, is supported by Sandia’s Laboratory Directed Research and Development program, which funds exploratory work in science and technology.

“The original electric grid was not designed with security in mind against cyberhacks, or protection from electromagnetic disturbances, or natural disasters such as hurricanes or geomagnetic solar storms,” portfolio manager Craig Lawton said.

“The primary objective of our mission portfolio is to mitigate vulnerabilities caused by antiquated technology in transformers and other components. Solutions require research, and we’re looking for collective inputs of ideas from researchers in industry, utility companies, universities, other labs and of course Sandia,” he said.

Deterring Aggression By Updating Weapon Systems
The second research campaign is developing enabling technical capabilities to help the U.S. maintain its strategic nuclear deterrent.

Sandia saysthat the Assured Survivability and Agility with Pulsed Power research campaign is a multi-year portfolio with up to $40 million in total funding, again by Sandia’s LDRD program. The mission portfolio is intended to explore technologies that use brief but powerful bursts of electrical energy to simulate nuclear explosions — without resorting to actual nuclear tests — to better understand their impact on electronics and materials.

“Our nuclear weapons systems have been relatively static, while the capabilities and technologies used by our potential adversaries are evolving at a rapid pace,” said Sandia physicist Kyle Peterson, who developed and leads the mission. “We must be more agile in identifying potential threats to maintain an effective deterrent against hostile military actions.

“We’re open to, and hope for, input from researchers in industry, universities and other national labs as well as Sandia to contribute ideas and work in this effort,” said Peterson.

Additional benefits from both mission portfolios are expected to include more efficient electrical generation, more accurate data for astrophysicists, and a closer approach to break-even and even high-yield fusion, which can generate electrical energy by fusing atoms — a goal of a branch of physics for 70 years.

Improving Resiliency of U.S. Utilities
There’s room for improvement in the protection of the U.S. energy system, said Lawton.

“Our electrical generating