The USGS Prepares to Respond During the 2020 Atlantic Hurricane Season

These forecasts can help emergency managers make critical decisions before a major storm strikes, including which areas to evacuate, which roads to use and where to position storm cleanup equipment. The forecasts typically begin 72 hours before a storm is expected to make landfall, are updated based on the latest forecasts from the National Hurricane Center and are available at the USGS Coastal Change Hazards Portal. The site has recently been updated with new coastal elevation data that reflect sandy shoreline changes brought by recent hurricanes and new scenarios of storm-induced erosion. This allows forecasts for the 2020 hurricane season to be based on the latest information available.

Working with the National Weather Service, the coastal hazards storm team also updates forecasts for some areas several times a day using real-time water levels from the weather service’s Nearshore Wave Prediction System. The team’s Total Water Level and Coastal Change Forecast Viewer displays results from a new model that currently covers about 1,865 miles of coastline in select areas from Florida through Maine. The model predicts the timing and height of water levels at the shoreline as well as potential impacts to coastal dunes. NOAA will use the predictions to help inform forecasters at the National Hurricane Center. As the program’s coverage area expands, the predictions will also be made available to National Weather Service forecasting offices and to the public.

“We are working to expand the Total Water Level Viewer to include the Gulf coasts of Texas, Alabama and the Florida panhandle, as well as additional areas along the Atlantic coast which will give us about 2,900 miles of total coastline coverage,” said oceanographer Kara Doran, USGS Coastal Change Hazards Storm Team leader. “We hope the new information will be publicly available sometime later this season.”

Measuring and Monitoring the Storm
Once it’s determined a hurricane or tropical storm will likely strike somewhere in the U.S., and if it’s deemed safe and necessary, USGS field crews will deploy to the storm’s projected path along the coast to install special water-level measuring instruments called storm-tide sensors. These sensors record data that track storm tides and coastal flooding. This information helps USGS and NOAA scientists improve forecast models. It also helps relief efforts by FEMA and other federal, state and local agencies by pinpointing the areas hardest hit by storm-tide flooding.

Storm-tide sensor information can also help engineers design structures to better withstand floods and assess how well engineered dunes and wetlands reduce storm damage. It can help inform land-use practices and building codes which can lead to more resilient coastal communities.

USGS crews may also install rapid-deployment gauges at locations that are not monitored year-round with permanent streamgages but are at risk of flooding due to an approaching storm. These RDGs provide real-time information on water levels, precipitation, wind speed, humidity and barometric pressure to emergency managers tracking floodwaters.

RDGs can be quickly installed at critical locations to help augment the USGS’s nationwide real-time network of streamgages, about 8,500 of which transmit both streamflow and water level, while another 1,700 streamgages transmit only water levels. The National Weather Service uses data from the streamgages that provide both water level and streamflow to develop flood forecasts. The U.S. Army Corps of Engineers uses these data to make flood-control decisions. The streamgages that provide only water levels are used by local agencies to track flooding and plan emergency response; they also allow the public to monitor local rivers and stream levels in real time.

You can track storm-tide sensor and RDG deployments and view past storms on the USGS Flood Event Viewer and see USGS streamgage readings in real time on both the viewer and the USGS National Water Information System.

Determining the Extent of Flooding
Once it is safe to do so after the storm has passed, USGS field crews usually travel to affected areas to make real-time streamflow measurements, verify the accuracy of streamgage readings and quickly repair or replace damaged or lost gauges. This work is vital to flood forecasting and informs decisions on how best to protect communities.

USGS crews often fan out across affected areas to document high water. They look for telltale lines of seeds, leaves, grass blades and other debris left behind on tree trunks, buildings, bridges and other structures as floodwaters recede. Once they find these high-water marks, they photograph them, take notes, and survey them to determine the depth and range of the flooding. This field work is time-sensitive, because high-water marks can be destroyed by weather and property owners’ cleanup efforts. FEMA uses high-water mark data and related information to steer relief to areas of greatest need in the days after a storm, and later, to update flood insurance maps.

USGS specialists can develop indirect measurements of water flow using high-water marks in places where flooding is not measured by an instrument. A computer model uses information about the stream’s shape, depth and vegetation to determine how much water flow it would take to create a flood that produced the high-water marks.

To analyze field data gathered after a storm, USGS scientists need accurate, detailed information about land elevation, which is provided by the USGS 3D Elevation Program. That program collects data using lidar - a technique that uses light pulses to produce high resolution elevation imagery - over the United States and its territories. These data are used for mapping storms’ flood inundation, modeling storm surge, evaluating topographic changes like beach and dune erosion and pinpointing damage to buildings and other infrastructure. Up-to-date elevation data are also essential for supporting infrastructure repair and redevelopment after a storm.

The USGS 3D Elevation Program acquires the information nationwide and makes it available on The National Map.

Creating Maps and Apps for Hurricane Response
During a disaster like a hurricane, first responders often rely on the USGS National Geospatial Program, which collects, archives and shares digital records of the nation’s topography, natural landscape and human-made environment. The program’s Geospatial Information Response Team (GIRTworks within the USGS and with partner agencies to provide key information to federal, state and local agencies, emergency managers and first responders. The information is shown on multi-layered digital maps or on printed maps that can provide a big-picture view of a storm’s impacts or a close-up of a specific community.

“In the 2020 hurricane season, the GIRT will continue to provide situational awareness of storms and the aftermath through the USGS Event Support Map,” said USGS physical scientist Lance Clampitt, the GIRT chairman. “We are also ready to support requests for hard copy US topographic maps or base map information for search and rescue mission or response operations.”

Recovering and rebuilding
The work of repairing and rebuilding in the aftermath of previous hurricanes continues. Congress has funded Federal agency hurricane-related expenditures in parts of the U.S. affected by hurricane strikes in 2018. The money allocated to USGS includes funding to restore scientific infrastructure damaged in North Carolina by Hurricane Florence and in Florida by Hurricane Michael.

In the wake of Hurricane Maria, which triggered more than 70,000 landslides when it passed over Puerto Rico in 2017, the USGS worked with the University of Puerto Rico Mayagüez and the University of Colorado Boulder to publish a Landslide Guide for Residents of Puerto Rico. The project team is working with stakeholders in Puerto Rico to increase awareness of landslide hazards and to share strategies that can mitigate landslide risk if storms hit Puerto Rico in 2020.

USGS has recently acquired new high-resolution lidar imagery in many coastal areas. The images allow scientists to assess topographic changes caused by major storms such as beach and dune erosion, landslides, and damage to buildings and infrastructure. In coastal parts of Florida and Georgia affected by Hurricane Michael in 2018, new lidar images have been acquired and the data are being processed. The data will be used to update vegetation and wildfire fuels mapping in forested areas damaged by Hurricane Michael. This, in turn, will allow scientists to better understand how hurricanes can impact wildfire risks. The lidar datasets are publicly available on The National Map website or are in progress.

Hurricane Preparedness Resources
USGS says that while the USGS is prepared for the coming season, people potentially in the path of hurricanes can prepare as well by going to ready.gov or listo.gov for advice on what steps they can take to protect lives and property.

For more information please visit these websites:

USGS Coastal Change Hazards: Hurricanes and Extreme Storms – Information on coastal change

USGS Flood Information—Information about current and past flooding

USGS WaterAlert – Sends email or text messages from the USGS streamgage of your choice

USGS WaterWatch— Provides current USGS water data for the nation

NOAA’s National Hurricane Center