Infrastructure protectionRecord rise in sea level in two millennia

Published 21 June 2011

An international research team of scientists has shown that the rate of sea-level rise along the U.S. Atlantic coast is greater now than at any time in the past 2,000 years and that there is a consistent link between changes in global mean surface temperature and sea level

An international research team including University of Pennsylvania scientists has shown that the rate of sea-level rise along the U.S. Atlantic coast is greater now than at any time in the past 2,000 years and that there is a consistent link between changes in global mean surface temperature and sea level.

The research was conducted by members of the Department of Earth and Environmental Science in Penn’s School of Arts and Science: Benjamin Horton, associate professor and director of the Sea Level Research Laboratory, and postdoctoral fellow Andrew Kemp, now at Yale University’s Climate and Energy Institute.

Their work was published in the journal Proceedings of the National Academy of Sciences the other day.

“Sea-level rise is a potentially disastrous outcome of climate change, as rising temperatures melt land-based ice and warm ocean waters,” Horton said.

“Scenarios of future rise are dependent upon understanding the response of sea level to climate changes. Accurate estimates of past sea-level variability provide a context for such projections,” Kemp said.

A university of Pennsylvania release reports that in the new study, researchers provided the first continuous sea-level reconstruction for the past 2,000 years and compared variations in global temperature to changes in sea level during this time period.

The team found that sea level was relatively stable from 200 B.C. to 1,000 A.D. During a warm climate period beginning in the 11th century known as the Medieval Climate Anomaly, sea level rose by about half a millimeter per year for 400 years. There was then a second period of stable sea level associated with a cooler period, known as the Little Ice Age, which persisted until the late nineteenth century. Since the late nineteenth century, however, sea level has risen by more than 2 millimeters per year on average, which is the steepest rate for more than 2,100 years.

To reconstruct sea level, the research team used microfossils called foraminifera preserved in sediment cores from coastal salt marshes in North Carolina. The age of these cores was estimated using radiocarbon dating and several complementary techniques.

The release notes that to ensure the validity of their approach, the team members confirmed their reconstructions against tide-gauge measurements from North Carolina for the past eighty years and global tide-gauge records for the past 300 years. A second reconstruction from Massachusetts confirmed their findings. The records were also corrected for contributions to sea-level rise made by vertical land movements.

The team’s research shows that the reconstructed changes in sea level during the past millennium are consistent with past global temperatures and can be described using a model relating the rate of sea-level rise to global temperature.

“The data from the past help to calibrate our model and will improve sea-level rise projections under scenarios of future temperature rise,” research team member Stefan Rahmstorf said.

In addition to Horton and Kemp, the research was conducted by Jeffrey Donnelly of the Woods Hole Oceanographic Institution, Michael Mann of Pennsylvania State University, Martin Vermeer of Finland’s Aalto University School of Engineering in Finland, and Rahmstorf of Germany’s Potsdam Institute for Climate Impact Research.

Support for this research was provided by the National Science Foundation, the National Oceanic and Atmospheric Administration, United States Geological Survey, the Academy of Finland, the European Science Foundation through European Cooperation in Science and Technology and the University of Pennsylvania.