U.S. water supply contaminated by pharmaceuticals

percent, to $5.2 billion, over the past five years, according to an analysis of data from the Animal Health Institute.

Ask the pharmaceutical industry whether the contamination of water supplies is a problem, and officials will tell you no. “Based on what we now know, I would say we find there’s little or no risk from pharmaceuticals in the environment to human health,” said microbiologist Thomas White, a consultant for the Pharmaceutical Research and Manufacturers of America. At a conference last summer, however, Mary Buzby, director of environmental technology for drug maker Merck & Co., said: “There’s no doubt about it, pharmaceuticals are being detected in the environment and there is genuine concern that these compounds, in the small concentrations that they’re at, could be causing impacts to human health or to aquatic organisms.”

Recent laboratory research has found that small amounts of medication have affected human embryonic kidney cells, human blood cells, and human breast cancer cells. The cancer cells proliferated too quickly; the kidney cells grew too slowly; and the blood cells showed biological activity associated with inflammation. Also, pharmaceuticals in waterways are damaging wildlife across the nation and around the globe, research shows. Notably, male fish are being feminized, creating egg yolk proteins, a process usually restricted to females. Pharmaceuticals also are affecting sentinel species at the foundation of the pyramid of life — such as earth worms in the wild and zooplankton in the laboratory, studies show. Some scientists stress that the research is extremely limited, and there are too many unknowns. They say, though, that the documented health problems in wildlife are disconcerting. “It brings a question to people’s minds that if the fish were affected … might there be a potential problem for humans?” EPA research biologist Vickie Wilson told the AP. “It could be that the fish are just exquisitely sensitive because of their physiology or something. We haven’t gotten far enough along.” With limited research funds, said Shane Snyder, research and development project manager at the Southern Nevada Water Authority, a greater emphasis should be put on studying the effects of drugs in water. “I think it’s a shame that so much money is going into monitoring to figure out if these things are out there, and so little is being spent on human health,” said Snyder. “They need to just accept that these things are everywhere — every chemical and pharmaceutical could be there. It’s time for the EPA to step up to the plate and make a statement about the need to study effects, both human and environmental.”

To the degree that the EPA is focused on the issue, it appears to be looking at detection. Grumbles acknowledged that just late last year the agency developed three new methods to “detect and quantify pharmaceuticals” in wastewater. “We realize that we have a limited amount of data on the concentrations,” he said. “We’re going to be able to learn a lot more.” While Grumbles said the EPA had analyzed 287 pharmaceuticals for possible inclusion on a draft list of candidates for regulation under the Safe Drinking Water Act, he said only one, nitroglycerin, was on the list. Nitroglycerin can be used as a drug for heart problems, but the key reason it is being considered is its widespread use in making explosives. So much is unknown. Many independent scientists are skeptical that trace concentrations will ultimately prove to be harmful to humans. Confidence about human safety is based largely on studies that poison lab animals with much higher amounts. There is growing concern in the scientific community, meanwhile, that certain drugs — or combinations of drugs — may harm humans over decades because water, unlike most specific foods, is consumed in sizable amounts every day. Our bodies may shrug off a relatively big one-time dose, yet suffer from a smaller amount delivered continuously over a half century, perhaps subtly stirring allergies or nerve damage. Pregnant women, the elderly and the very ill might be more sensitive. Many concerns about chronic low-level exposure focus on certain drug classes: chemotherapy that can act as a powerful poison; hormones that can hamper reproduction or development; medicines for depression and epilepsy that can damage the brain or change behavior; antibiotics that can allow human germs to mutate into more dangerous forms; pain relievers and blood-pressure diuretics.

For several decades, federal environmental officials and nonprofit watchdog environmental groups have focused on regulated contaminants