As wildfires expand, fire science needs to keep up

Winds, flames and fuels
U.S. building and fire protection standards and regulations have improved in the last 10 to 15 years, particularly in California, but many communities are still extremely vulnerable. Best practices, such as the National Fire Protection Association’s Firewise USA program and California’s Fire Safe, are a good start but should be expanded, based on research.

Understanding of vulnerabilities at a structural level is improving but not sufficient yet. Once fire moves from wildlands into developed areas, flames are fueled by engulfed homes and structures, creating conflagrations. For example, the California fires consumed entire neighborhoods as flames spread unhindered from one flammable element to another. This pattern has also been observed in many other locations.

Better community design could help prevent this domino effect, averting massive property losses and evacuations. Communities should contain patchworks of flammable fuels such as vegetation, houses and cars, interspersed with less flammable and nonflammable areas such as parking lots and areas cleaned of vegetation. This strategy can decrease fire intensity, slow down fires and break down large fire fronts into smaller fingers that are easier to fight.

Another priority is the role of flammable building materials. Structural ignition often starts with firebrands – pieces of burning wood that are lofted by winds, and can spread wildfire past barriers and firebreaks – but scientists are still working to quantify their impact.

Many interacting factors influence whether and how wildfires will spread, including fire intensity, wind intensity, the quantity of firebrands that land on structures, the heat that impacts structures, how structures ignite, the distance between structures and vegetation, and the distance between structures. Researchers should aim to design suites of engineering solutions that will be versatile enough to adjust to specific scenarios and quantified exposures. They should include small-scale steps, such as removing flammable vegetation, pruning trees, using less-flammable construction materials, and dealing with identified vulnerabilities such as fences. And they should extend to larger-scale strategies, such as breaking up wildfire fronts, slowing down fire spread and redesigning communities.

Major costs, modest funding
U.S. fire research is funded by the U.S. Forest Service, the National Institute of Standards and Technology and other federal agencies. Universities receive funding through the Joint Fire Science Program, which is jointly funded by the Interior Department and the Forest Service, and indirectly through other agencies such as the National Science Foundation, the Defense Department’s environmental research programs and NASA.

Federal funding for fire research pales compared to the cost of fighting wildfires and the economic damage they cause. For example, in 2017 the Forest Service received about US$27 million for the National Fire Plan Research and Development Program and the Joint Fire Science Program, while the Interior Department received about $6 million for the Joint Fire Science Program. President Trump’s 2018 budget request would terminate Forest Service’s participation in the Joint Fire Science Program and reduce the Department of the Interior’s funding for the program to $3 million, which would mean no new projects and topics funded. Many members of the research community are concerned about this lack of investment.

For comparison, the Forest Service and Interior together spent nearly $2 billion in 2016 fighting wildfires. The Forest Service alone has spent over $2 billion in this fiscal year on wildland fire suppression. And preliminary damage estimates for the California wildfires range from $1 billion to $6 billion or more.

Similar pressures undercut funding for wildfire prevention in Portugal after its 2011-2014 recession. And the European Union stopped funding basic science related to fire dynamics and wildland-urban interface fires almost a decade ago, focusing instead on applied technological projects and more general research on natural disasters. Funding for firefighting has also declined in Russia, where environmental groups claim that the number of fires is significantly underreported.

Fire conditions are constantly evolving, and basic research coupled with engineering solutions must keep up. Designing more resilient communities and infrastructure and protecting people more effectively are not onetime goals – they are constant. Currently nations are failing to meet the challenge, and impacts on communities are increasing.

Albert Simeoni is Professor of Fire Protection Engineering, Worcester Polytechnic Institute. This article is published courtesy of The Conversation (under Creative Commons-Attribution / No derivative).