AIRPORT SECURITYWalk-Through Screening System Enhances Security at Airports Nationwide
A new security screener that people can simply walk past may soon be coming to an airport near you. Last year, U.S. airports nationwide began adopting HEXWAVE to satisfy a new Transportation Security Administration (TSA) mandate for enhanced employee screening to detect metallic and nonmetallic threats.
A new security screener that people can simply walk past may soon be coming to an airport near you. Last year, U.S. airports nationwide began adopting HEXWAVE — a commercialized walkthrough security screening system based on microwave imaging technology developed at MIT Lincoln Laboratory — to satisfy a new Transportation Security Administration (TSA) mandate for enhanced employee screening to detect metallic and nonmetallic threats. The TSA is now in the process of evaluating HEXWAVE as a potential replacement of metal detectors to screen PreCheck passengers.
Typically, when you arrive at an airport security checkpoint line, you place your carry-on items on the conveyer belt, remove your shoes and any metallic items, and enter a body scanner. As you hold still for a few seconds with your feet spread apart and your arms extended over your head, the scanner creates a generic, featureless 3D body outline revealing any metallic or nonmetallic concealed weapons or other prohibited items.
Requiring individuals to stop, remove clothing and belongings, and pose for scans impedes traffic flow in airports and other highly populated venues, such as stadiums, shopping malls, mass transit stations, and schools. To enable more efficient screening of unstructured crowds and ensure public safety, the Department of Homeland Security (DHS) Science and Technology Directorate (S&T) sponsored Lincoln Laboratory to prototype a high-resolution imaging system capable of scanning people and their belongings as they walk by. This R&D effort was conducted as part of S&T’s Surface Transportation Explosive Threat Detection Program, which aims to provide the surface-transportation end user-community (e.g., mass transit) with a layered and integrated capability to detect threat items at the speed of the traveling public.
The laboratory’s prototype microwave imager, which consists of a set of antennas installed on flat panels, operates under the same fundamental principle as existing body scanners: low-energy radio waves (less powerful than those transmitted by a cellphone) are transmitted from antennas toward a person’s body and reflect off skin and any hidden objects; the reflected waves return to the antennas and are processed by a computer to create an image, which security personnel then review to identify any potential concealed threats.
