First-of-its-kind CO2 sensor network deployed in Oakland

880 on the west, and from El Cerrito on the north nearly to the San Leandro border, encompassing open space as well as heavily trafficked areas.

Most of the sensors are being mounted on the roofs of local schools, Cohen said, in order to get students interested in the connection between carbon dioxide emissions and climate change. The UC Berkeley researchers work with Oakland’s Chabot Space & Science Center to create middle school and high school activities using live sensor data streamed through the Web as part of the students’ energy and climate science curriculum.

“As soon as we heard about the sensor project, we thought it was so timely, clever and relevant to our mission – to inspire young people to take responsibility for Planet Earth, and to learn about climate science,” said Etta Heber, director of education at Chabot. “We are thrilled to be working with Ron and his team to engage the K-12 community in cutting-edge science.”

Nine of the sensors are now in place at Chabot, the Oakland Zoo, two high schools and five elementary schools. Others are ready to install, pending approval by school officials.

Two are reserved for the new Exploratorium in San Francisco, which is scheduled to open next year on Pier 15 and includes an exhibit on CO2 and climate change. The sensors could detect the fumes from a passing ship or the effects of a “Spare the Air” day, Cohen said.

The release notes that Cohen and his UC Berkeley colleagues have built refrigerator-sized monitoring equipment for years, each package costing up to $250,000, but providing exquisitely precise and detailed data. The new sensor packages cost one-twentieth as much because they make use of off-the-shelf devices, such as a nitrogen dioxide sensor identical to that found in industrial toxic gas alerts.

The BEACON network is a pilot program funded by the National Science Foundation to determine what information can be learned from a densely spaced network. Lower cost means less sensitive instruments, but the precision should be offset by sheer numbers, Cohen said.

“A massive number of inexpensive sensors as common as cell phone towers will fundamentally change our knowledge,” said Cohen, who directs the Berkeley Atmospheric Science Center. “Real time observations will enable rapid verification of the effectiveness of policy and compliance with treaties and other agreements and commitments.”

Teige noted that the current sensors will be placed about two kilometers apart. “How closely spaced these sensors need to be in an optimal network is still an open question that we intend to address with this pilot, before expanding the network to other cities and the entire Bay area,” she said.

Each sensor is connected to the Internet, many of them wirelessly, so they can send measurements every five seconds to a computer in Hildebrand Hall on the UC Berkeley campus. Cohen and Teige hope to have all forty sensors in place by the end of the summer, just in time for the opening of classes in local schools.

“I’m anxious to see the data that will come out,” said Chabot’s Ben Burress, who developed the teaching guides and is training teachers how to use data visualization software to display sensor data. “I think it’s fantastic that Ron wants to complement his research with real-time science in the classroom.”