EncryptionA first: High-dimensional quantum encryption demonstrated
For the first time, researchers have sent a quantum-secured message containing more than one bit of information per photon through the air above a city. The demonstration showed that it could one day be practical to use high-capacity, free-space quantum communication to create a highly secure link between ground-based networks and satellites, a requirement for creating a global quantum encryption network.
For the first time, researchers have sent a quantum-secured message containing more than one bit of information per photon through the air above a city. The demonstration showed that it could one day be practical to use high-capacity, free-space quantum communication to create a highly secure link between ground-based networks and satellites, a requirement for creating a global quantum encryption network.
OSA notes that quantum encryption uses photons to encode information in the form of quantum bits. In its simplest form, known as 2D encryption, each photon encodes one bit: either a one or a zero. Scientists have shown that a single photon can encode even more information — a concept known as high-dimensional quantum encryption — but until now this has never been demonstrated with free-space optical communication in real-world conditions. With eight bits necessary to encode just one letter, for example, packing more information into each photon would significantly speed up data transmission.
“Our work is the first to send messages in a secure manner using high-dimensional quantum encryption in realistic city conditions, including turbulence,” said research team lead, Ebrahim Karimi, University of Ottawa, Canada. “The secure, free-space communication scheme we demonstrated could potentially link Earth with satellites, securely connect places where it is too expensive to install fiber, or be used for encrypted communication with a moving object, such as an airplane.”
As detailed in Optica, the Optical Society’s journal, the researchers demonstrated 4D quantum encryption over a free-space optical network spanning two buildings 0.3 kilometers apart at the University of Ottawa. This high-dimensional encryption scheme is referred to as 4D because each photon encodes two bits of information, which provides the four possibilities of 01, 10, 00 or 11.
In addition to sending more information per photon, high-dimensional quantum encryption can also tolerate more signal-obscuring noise before the transmission becomes unsecure. Noise can arise from turbulent air, failed electronics, detectors that don’t work properly and from attempts to intercept the data. “This higher noise threshold means that when 2D quantum encryption fails, you can try to implement 4D because it, in principle, is more secure and more noise resistant,” said Karimi.