CybersecurityUsing smartphones — instead of body parts — for identification to deter cybercrime
Not comfortable with Face ID and other biometrics? This cybersecurity advancement may be for you. Researchers have discovered how to identify smartphones by examining just one photo taken by the device. The advancement opens the possibility of using smartphones — instead of body parts — as a form of identification to deter cybercrime.
Not comfortable with Face ID and other biometrics? This cybersecurity advancement may be for you.
A University at Buffalo-led team of researchers has discovered how to identify smartphones by examining just one photo taken by the device. The advancement opens the possibility of using smartphones — instead of body parts — as a form of identification to deter cybercrime.
“Like snowflakes, no two smartphones are the same. Each device, regardless of the manufacturer or make, can be identified through a pattern of microscopic imaging flaws that are present in every picture they take,” says Kui Ren, the study’s lead author. “It’s kind of like matching bullets to a gun, only we’re matching photos to a smartphone camera.”
Buffalo says that the new technology, to be presented in February at the 2018 Network and Distributed Systems Security Conference in California, is not yet available to the public. However, it could become part of the authentication process — like PIN numbers and passwords — that customers complete at cash registers, ATMs and during online transactions.
For people who have had their personal identification stolen, it could also help prevent cybercriminals from using that information to make purchases in their name, says Ren, SUNY Empire Innovation Professor in the Department of Computer Science and Engineering in UB’s School of Engineering and Applied Sciences.
How each camera is unique
The study — “ABC: Enabling Smartphone Authentication with Built-in Camera” — centers on an obscure flaw in digital imaging called photo-response non-uniformity (PRNU).
Digital cameras are built to be identical. However, manufacturing imperfections create tiny variations in each camera’s sensors. These variations can cause some of sensors’ millions of pixels to project colors that are slightly brighter or darker than they should be.
Not visible to the naked eye, this lack of uniformity forms a systemic distortion in the photo called pattern noise. Extracted by special filters, the pattern is unique for each camera.