Salvage yard as a source for rare-earth elements

Determining the actual amount of REEs in vehicles is a challenge because REEs are used in small quantities across different types of components. Alternators, which supply a steady charge to a vehicle’s electrical system, are not a main source of REEs, Imholte said. In fact, none of the alternators in any of the disassembled vehicles have contained magnets.

Magnets in conventional cars and trucks are generally used in devices that require high torque and back-and-forth motion. These include the motors that power windshield wipers, air-conditioning blower motors, engine cooling fans, seat motors, and power steering motors. And the speakers use neodymium in their magnets.

Inventorying the components taken from a 2010 Ford F-150 truck, Nguyen and Imholte found 120 grams of magnet alloy containing 30 grams of neodymium in the front-door speakers. Neodymium magnets were also found in front-door speakers of a 2011 Chevy Silverado at a smaller amount: 16 grams with 4 grams of neodymium. In the 22 components across 17 different applications, the researchers found lower amounts of REEs than the literature indicated they should expect.

Considering the time involved — removing the components took iPull two-and-a-half hours, getting the magnets out of them took 11 hours at IRC — cost will be an issue in any recovery efforts. Nguyen and Imholte have since turned their attention to a 2009 Toyota Corolla. “We’re eager to learn if the results from a sedan are different from a truck,” Nguyen said. After that, they have lined up a 2012 Honda Accord.

“Nobody is doing this nuts-and-bolts disassembly on U.S. automobiles like we are,” Imholte said. “We’re really just starting to look at REE consumption in this way.”

Several factors could change the game as the study progresses. After a sharp drop in 2012, some REEs experienced a steady price rebound due to the expansion of electric vehicles and the renewable energy industry. Prices for neodymium and praseodymium soared more than 50 percent in 2017.

Analysts at Argonaut Ltd. estimate that use of magnets in electric vehicles and wind turbines will cause demand for neodymium and praseodymium to increase almost 250 percent over the next 10 years. Electric vehicles use roughly 1 kilogram more rare-earth oxides than conventional internal combustion cars, according to their research. Adamas Intelligence sees demand for magnet-oriented rare-earth oxides increasing to $6.07 billion by 2025, representing a compound annual growth rate of 17.4 percent from $1.44 billion in 2016.

“The use of permanent magnet motors in new electric vehicle designs released in 2018 will be an interesting area to watch,” David Merriman, deputy manager for Roskill Information Services’ minor metals division, told Rare Earth Investing News in December 2017. “If more and more manufacturers switch to rare earth permanent magnet designs, demand will undoubtedly follow.”