Blueprint for Quantum Internet Unveiled

“The combined intellectual and technological leadership of the University of Chicago, Argonne and Fermilab has given Chicago a central role in the global competition to develop quantum information technologies,” said Robert J. Zimmer, president of the University of Chicago. “This work entails defining and building entirely new fields of study, and with them, new frontiers for technological applications that can improve the quality of life for many around the world and support the long-term competitiveness of our city, state, and nation.”

“Argonne, Fermilab and the University of Chicago have a long history of working together to accelerate technology that drives U.S. prosperity and security,” said Argonne Director Paul Kearns. “We continue that tradition by tackling the challenges of establishing a national quantum internet, expanding our collaboration to tap into the vast power of American scientists and engineers around the country.”

“Decades from now, when we look back to the beginnings of the quantum internet, we’ll be able to say that the original nexus points were here in Chicago — at Fermilab, Argonne and the University of Chicago,” said Nigel Lockyer, director of Fermilab. “As part of an existing scientific ecosystem, the DOE National Laboratories are in the best position to facilitate this integration.”

A Range of Unique Abilities
One of the hallmarks of quantum transmissions is that they are exceedingly difficult to eavesdrop on as information passes between locations. Scientists plan to use that trait to make virtually unhackable networks. Early adopters could include industries such as banking and health services, with applications for national security and aircraft communications. Eventually, the use of quantum networking technology in mobile phones could have broad impacts on the lives of individuals around the world.

Scientists are also exploring how the quantum internet could expedite the exchange of vast amounts of data. If the components can be combined and scaled, society may be at the cusp of a breakthrough in data communication, according to the report.

Finally, creating networks of ultra-sensitive quantum sensors could allow engineers to better monitor and predict earthquakes — a longtime and elusive goal — or to search for underground deposits of oil, gas or minerals. Such sensors could also have applications in health care and imaging.

A Multi-Lab, Multi-Institution Effort
Creating a full-fledged prototype of a quantum internet will require intense coordination among U.S. Federal agencies — including DOE, the National Science Foundation, the Department of Defense, the National Institute for Standards and Technology, the National Security Agency and NASA — along with National Laboratories, academic institutions and industry.

The report lays out crucial research objectives, including building and then integrating quantum networking devices, perpetuating and routing quantum information and correcting errors. Then, to put the nationwide network into place, there are four key milestones: Verify secure quantum protocols over existing fiber networks, send entangled information across campuses or cities, expand the networks between cities and finally expand between states, using quantum “repeaters” to amplify signals.

“The foundation of quantum networks rests on our ability to precisely synthesize and manipulate matter at the atomic scale, including the control of single photons,” said David Awschalom, Liew Family Professor in Molecular Engineering at the University of Chicago’s Pritzker School of Molecular Engineering, senior scientist at Argonne National Laboratory, and director of the Chicago Quantum Exchange. “Our National Laboratories house world-class facilities to image materials with subatomic resolution and state-of-the-art supercomputers to model their behavior. These powerful resources are critical to accelerating progress in quantum information science and engineering, and to leading this rapidly evolving field in collaboration with academic and corporate partners.”

“In addition to our collaboration with the University of Chicago, Fermilab is working with Argonne, Caltech, Northwestern University and tech startups to develop the architecture and gradually deploy and connect quantum communication nodes across the city of Chicago. Before long, with this second group of collaborators, we’ll be teleporting data across a metropolitan network,” said Panagiotis Spentzouris, head of quantum programs at Fermilab. “This blueprint is important for telling us how we build this out nationwide.”

Other National Laboratories are also driving advances in quantum networking and related technologies. For example, Stony Brook University and Brookhaven National Laboratory, working with the DOE’s Energy Sciences Network headquartered at Lawrence Berkeley National Laboratory, have established an 80-mile quantum network test bed and are actively expanding it in New York State and at Oak Ridge and Los Alamos National Laboratories. Other research groups are focused on developing a quantum cryptography system with highly secured information.