A Growing Problem of “Deepfake Geography”: How AI Falsifies Satellite Images

security threat.

To study how satellite images can be faked, Zhao and his team turned to an AI framework that has been used in manipulating other types of digital files. When applied to the field of mapping, the algorithm essentially learns the characteristics of satellite images from an urban area, then generates a deepfake image by feeding the characteristics of the learned satellite image characteristics onto a different base map — similar to how popular image filters can map the features of a human face onto a cat.

Next, the researchers combined maps and satellite images from three cities — Tacoma, Seattle and Beijing — to compare features and create new images of one city, drawn from the characteristics of the other two. They designated Tacoma their “base map” city and then explored how geographic features and urban structures of Seattle (similar in topography and land use) and Beijing (different in both) could be incorporated to produce deepfake images of Tacoma.

In the example below, a Tacoma neighborhood is shown in mapping software (top left) and in a satellite image (top right). The subsequent deep fake satellite images of the same neighborhood reflect the visual patterns of Seattle and Beijing. Low-rise buildings and greenery mark the “Seattle-ized” version of Tacoma on the bottom left, while Beijing’s taller buildings, which AI matched to the building structures in the Tacoma image, cast shadows — hence the dark appearance of the structures in the image on the bottom right. Yet in both, the road networks and building locations are similar.

The untrained eye may have difficulty detecting the differences between real and fake, the researchers point out. A casual viewer might attribute the colors and shadows simply to poor image quality. To try to identify a “fake,” researchers homed in on more technical aspects of image processing, such as color histograms and frequency and spatial domains.

Some simulated satellite imagery can serve a purpose, Zhao said, especially when representing geographic areas over periods of time to, say, understand urban sprawl or climate change. There may be a location for which there are no images for a certain period of time in the past, or in forecasting the future, so creating new images based on existing ones — and clearly identifying them as simulations — could fill in the gaps and help provide perspective.

The study’s goal was not to show that geospatial data can be falsified, Zhao said. Rather, the authors hope to learn how to detect fake images so that geographers can begin to develop the data literacy tools, similar to today’s fact-checking services, for public benefit.

“As technology continues to evolve, this study aims to encourage more holistic understanding      of geographic data and information, so that we can demystify the question of absolute reliability of satellite images or other geospatial data,” Zhao said. “We also want to develop more future-oriented thinking in order to take countermeasures such as fact-checking when necessary,” he said.