Selective Separation Could Help Alleviate Shortage of Critical Metals

In the process of synthetizing high-temperature sulfide materials to support electrochemical production, Stinn says, “we learned we could be very selective and very controlled about what products we made. And it was with that understanding that we realized, ‘OK, maybe there’s an opportunity for selectivity in separation here.’”

The chemical reaction exploited by the researchers reacts a material containing a mix of metal oxides to form new metal-sulfur compounds or sulfides. By altering factors like temperature, gas pressure, and the addition of carbon in the reaction process, Stinn and Allanore found that they could selectively create a variety of sulfide solids that can be physically separated by a variety of methods, including crushing the material and sorting different-sized sulfides or using magnets to separate different sulfides from one another.

Current methods of rare metal separation rely on large quantities of energy, water, acids, and organic solvents which have costly environmental impacts, says Stinn. “We are trying to use materials that are abundant, economical, and readily available for sustainable materials separation, and we have expanded that domain to now include sulfur and sulfides.”

Stinn and Allanore used selective sulfidation to separate out economically important metals like cobalt in recycled lithium-ion batteries. They also used their techniques to separate dysprosium — a rare-earth element used in applications ranging from data storage devices to optoelectronics — from rare-earth-boron magnets, or from the typical mixture of oxides available from mining minerals such as bastnaesite.

Leveraging Existing Technology
Metals like cobalt and rare earths are only found in small amounts in mined materials, so industries must process large volumes of material to retrieve or recycle enough of these metals to be economically viable, Allanore explains. “It’s quite clear that these processes are not efficient. Most of the emissions come from the lack of selectivity and the low concentration at which they operate.”

By eliminating the need for liquid separation and the extra steps and materials it requires to dissolve and then reprecipitate individual elements, the MIT researchers’ process significantly reduces the costs incurred and emissions produced during separation.

“One of the nice things about separating materials using sulfidation is that a lot of existing technology and process infrastructure can be leveraged,” Stinn says. “It’s new conditions and new chemistries in established reactor styles and equipment.”

The next step is to show that the process can work for large amounts of raw material — separating out 16 elements from rare-earth mining streams, for example. “Now we have shown that we can handle three or four or five of them together, but we have not yet processed an actual stream from an existing mine at a scale to match what’s required for deployment,” Allanore says.

Stinn and colleagues in the lab have built a reactor that can process about 10 kilograms of raw material per day, and the researchers are starting conversations with several corporations about the possibilities.

“We are discussing what it would take to demonstrate the performance of this approach with existing mineral and recycling streams,” Allanore says.

Becky Ham is a freelance science writer. The article is reprinted with permission of MIT News.