PANDEMICDemographics Alone Do Not Explain COVID-19 Mortality Rates -- Place Matters, Too
Many Americans became amateur data scientists during the pandemic, tracking local rates of infection or vaccination to help them decide what activities may or may not be safe. Researchers examined this collected county-level data, and found that different demographic groups are vulnerable in different ways—often depending on their geographic location.
Many Americans became amateur data scientists during the pandemic, tracking local rates of infection or vaccination to help them decide what activities may or may not be safe. UChicago researchers saw an opportunity to dig deeper: By using county-level data, they found that different demographic groups are vulnerable in different ways—often depending on their geographic location.
What they discovered was that not all of a particular race or ethnic population in the U.S. is impacted by the same factors, or face the same COVID-19 outcomes. By identifying associations between COVID mortality and social determinants of health, the research team uncovered the specific ways that place has shaped how people experience the pandemic.
“We know it’s not just different demographics alone,” said Susan Paykin, a senior research manager at UChicago’s Center for Spatial Data Science. “It’s the structural, economic and social factors that define those places that are influencing higher death rates and case rates.”
The findings, published in JAMA Network Open, came from a cross-sectional study of 3,142 counties in 50 U.S. states and the District of Columbia—focusing on Black or African American, Hispanic or Latinx, and non-Hispanic White populations. The team looked at those different groups and their various social factors and whether they differed or were similar across urban, rural and suburban counties.
According to the study, Black or African American groups with high mortality rates—particularly in the Southeast—were more vulnerable due to low socioeconomic status, high income inequality, limited access to quality health care, and severe housing problems. White populations who experienced high mortality rates—most often in the rural Midwest—are located mostly in counties with a high percentage of older populations, and who have limited access to quality health care.
The team was made up of spatial data scientists and public health researchers who are part of the Healthy Regions and Policies Lab at UChicago’s Center for Spatial Data Science. This team works on the U.S. COVID Atlas, a free and open-source data visualization tool that connects COVID data and community indicators.
The team observed that different minority groups were experiencing disproportionately high mortality rates during the pandemic—but the available data from the CDC doesn’t show much granularity below the state level as it relates to race and ethnicity.