ARGUMENT: WAR IN SPACEGetting Serious About the Threat of High Altitude Nuclear Detonation

Published 23 September 2022

The ongoing commercialization of space with cost effective bulk electronics presents a tantalizing target for nations with a space disadvantage to target long-before a conflict could escalate to nuclear exchange. Robert “Tony” Vincent writes “the Department of Defense should get serious about planning for and countering the threat of high altitude nuclear detonations, starting with its various science and technology funding organizations.”

Aurora Borealis is the scientific term given to the natural light phenomenon of the Northern Lights. On July 9, 1962, the light phenomenon that Hawaiians watched was anything but natural. On that day, the Atomic Energy Commission, in collaboration with the Defense Atomic Support Agency, detonated a thermonuclear device in low Earth orbit. Robert “Tony” Vincent writes in War on the Rocks thatthe test, codenamed Starfish Prime, revealed an unfortunate lesson: Even one high altitude nuclear detonation is particularly effective at destroying satellites. Not only were satellites in the line of sight destroyed, but even satellites on the other side of Earth were damaged and rendered inoperable. Starfish Prime damaged or destroyed roughly one third of all satellites in low Earth orbit at the time. 

Vincent writes:

The ongoing commercialization of space with cost effective bulk electronics presents a tantalizing target for nations with a space disadvantage to target long-before a conflict could escalate to nuclear exchange. Therefore, the Department of Defense should get serious about planning for and countering the threat of high altitude nuclear detonations, starting with its various science and technology funding organizations. 

To do so, the Department of Defense should consider developing a coherent research portfolio with consolidated oversight that aims to maximize the survivability of military and commercial satellites from charged particle radiation. The portfolio should focus on rapidly characterizing the space radiation environment, disseminating this information for satellite countermeasures, vectoring excess charged particles out of orbit, and continuing to subsidize the ongoing commercialization of radiation resilient electronic components.

The threat of nuclear explosions in space is marginalized because the potency of their effects is not widely known and the likelihood of nuclear attack in space is assumed to be negligible. Despite this skepticism, war planners should recognize that the growing number of satellites in space may change the incentive structures to disable them in some sort of nuclear attack. The dynamics of escalation are also not straightforward. The use of a nuclear weapon in space may not invite a nuclear response. This means that the traditional way to deter nuclear use — the threat of catastrophic reprisal — may not be as straight forward as many think. Taken together, there is ample incentive to explore making American infrastructure in space more resilient to this on-going threat.

Vincent writes that current risk mitigation of the threat of high altitude nuclear detonations myopically focuses on radiation hardening of electronics, which is insufficient, and simply pretending the likelihood of attack is near zero. “The Department of Defense should invigorate efforts to counter the threat of high altitude nuclear detonations and recognize that the ongoing commercialization of space will lead to an even greater dependency of low Earth orbiting platforms that will remain vulnerable to the charged particle outputs of nuclear explosions,” he writes. 

Vincent concludes:

The possibility of high altitude nuclear weapons targeting space assets is not a novel threat, but one that is historically dismissed. The nature of orbiting around Earth means that space assets are periodically exposed in highly predictable patterns. In fact, delivering a nuclear weapon into low earth orbit is an easier engineering challenge for a nation like North Korea than targeting the continental United States because the missile’s warhead has to survive the drag and heat of atmospheric reentry. Space assets are not just tempting targets but become more provocative with each supported military operation. Therefore, the Department of Defense needs to form a coherent research and development plan with a dedicated lead to champion the mission of countering high altitude nuclear detonations.