CYBERSECURITYDigital Twins Could Protect Manufacturers from Cyberattacks

Published 27 February 2023

Detailed virtual copies of physical objects, called digital twins, hold the promise of better products across automotive, health care, aerospace and other industries. According to a new study, cybersecurity may also fit neatly into the digital twin portfolio.

Detailed virtual copies of physical objects, called digital twins, are opening doors for better products across automotive, health care, aerospace and other industries. According to a new study, cybersecurity may also fit neatly into the digital twin portfolio. 

As more robots and other manufacturing equipment become remotely accessible, new entry points for malicious cyberattacks are created. To keep pace with the growing cyber threat, a team of researchers at the National Institute of Standards and Technology (NIST) and the University of Michigan devised a cybersecurity framework that brings digital twin technology together with machine learning and human expertise to flag indicators of cyberattacks.

In a paper published in IEEE Transactions on Automation Science and Engineering, the NIST and University of Michigan researchers demonstrated the feasibility of their strategy by detecting cyberattacks aimed at a 3D printer in their lab. They also note that the framework could be applied to a broad range of manufacturing technologies. 

Cyberattacks can be incredibly subtle and thus difficult to detect or differentiate from other, sometimes more routine, system anomalies. Operational data describing what is occurring within machines — sensor data, error signals, digital commands being issued or executed, for instance — could support cyberattack detection. However, directly accessing this kind of data in near real time from operational technology (OT) devices, such as a 3D printer, could put the performance and safety of the process on the factory floor at risk.

“Typically, I have observed that manufacturing cybersecurity strategies rely on copies of network traffic that do not always help us see what is occurring inside a piece of machinery or process,” said NIST mechanical engineer Michael Pease, a co-author of the study. “As a result, some OT cybersecurity strategies seem analogous to observing the operations from the outside through a window; however, adversaries might have found a way onto the floor.”

Without looking under the hood of the hardware, cybersecurity professionals may be leaving room for malicious actors to operate undetected. 

Taking a Look in the Digital Mirror
Digital twins aren’t your run-of-the-mill computer models. They are closely tied to their physical counterparts, from which they extract data and run alongside in near real time. So, when it’s not possible to inspect a physical machine while it’s in operation, its digital twin is the next best thing.