NUCLEAR POWEREnhancing Advanced Nuclear Reactor Analysis

By Mollie Rappe

Published 4 May 2023

Nuclear power is a significant source of steady carbon-neutral electricity, and advanced reactors can add more of it to the U.S. grid, which is vital for the environment and economy. Sandia Lab researchers have developed a standardized screening method to determine the most important radioactive isotopes that could leave an advanced reactor site in the unlikely event of an accident.

Nuclear power is a significant source of steady carbon-neutral electricity, and advanced reactors can add more of it to the U.S. grid, which is vital for the environment and economy.

For decades, Sandia has supported the Nuclear Regulatory Commission in its role of regulating and licensing nuclear reactors. With many advanced nuclear reactor designs being developed for potential licensing, this support is as important as ever, said Sandiageosciences engineer Kyle Clavier.

One of Sandia’s newest aids for NRC licensing efforts is a standardized screening method to determine the most important radioactive isotopes that could leave an advanced reactor site in the unlikely event of an accident. The Sandia team recently applied it to a conceptual design for a heat pipe reactor and shared the results with the commission and greater scientific community.

Radioactive isotopes are unstable forms of elements that release energy in various forms of potentially harmful radiation as part of the process of becoming more stable isotopes. For example, naturally occurring radon-222 is a product of the decay of uranium and in turn decays into polonium-218, releasing alpha radiation. This decay process is particularly harmful if it occurs in someone’s lungs, which is why the Environmental Protection Agency urges homeowners to test for the buildup of radon gas in their houses.

“We’re having a nuclear renaissance right now, where quite a few new reactor designs are coming out that promise to have more passive safety features, be more modular and have other advantages over conventional nuclear reactors,” said Kyle, who has worked on the method and applying it to an example reactor design. “We are working to provide the NRC the tools it needs to make sure that when these new advanced reactors are licensed, the NRC can accurately quantify the potential risks and thus ensure that the reactors are safe for operation.”

heat pipe reactor is an advanced design that uses a substance such as an inert gas or liquid metal to cool the core. This means that the reactor could potentially need a lot less water than light-water reactors, which use normal water to cool the nuclear fuel and produce steam to generate electricity, said Dan Clayton, a Sandia nuclear engineer also heavily involved in the project. Light-water reactors are the most common type of nuclear power plant design.