DRONESTesting Cutting-Edge Counter-Drone Technology
Drones have many positive applications, bad actors can use them for nefarious purposes. Two recent field demonstrations brought government, academia, and industry together to evaluate innovative counter-unmanned aircraft systems.
Although drones have many positive applications, bad actors can use them for nefarious purposes. In June 2023, a drone caused all flights to be grounded for about 30 minutes at Pittsburgh International Airport. The Federal Aviation Administration (FAA) receives more than 100 reports of unmanned aircraft sightings from pilots, citizens, and law enforcement each month, with many of these drones operating around airplanes, helicopters and airports. Disruptive drones have also been flown over malls, sporting events, stadiums, and amusement parks. In addition, they are used to smuggle drugs like fentanyl and other contraband items and to facilitate human smuggling into the United States.
To defend against the malicious use of drones, the Science & Technology Directorate (S&T) evaluated innovative counter-unmanned aircraft systems (C-UAS) technologies, a.k.a. counter-drone technologies, during two live demonstrations that took place last summer.
Before these events, S&T issued two public requests for information in April to gather data from vendors regarding existing counter-drone technologies and then down selected the most promising ones to participate in the demonstrations.
Kinetic Capabilities for Countering Small Drones
A handful of vendors participated in the first demonstration, held in July at Camp Grafton South in North Dakota, which is managed by the North Dakota National Guard. The University of North Dakota (UND), Northern Plains UAS Test Site (NPUASTS), and accessND provided the personnel and expertise to execute the demonstration.
The purpose was to collect information on the collateral effects of kinetic mitigation systems. These are systems that use the force of accelerating masses to physically alter, bring down, or destroy drones—forces such as projectiles, nets, photon plasma from lasers, and electromagnetic or radio waves. While kinetic mitigation technologies have been used by the Department of Defense before, the collateral effects of using kinetic capabilities (such as falling debris from intercepted drones) have not been clearly documented.
S&T partnered with UND, which is part of the FAA’s Center of Excellence for Unmanned Air Systems. “The information and data collected during this event will assist S&T in understanding, measuring, and minimizing collateral effects as kinetic C-UAS mitigation solutions are applied to Department of Homeland Security missions,” said S&T Program Manager Andy Myers.