ENERGY SECURITYUtah FORGE Achieves Crucial Geothermal Milestone

By Brian Maffly

Published 13 June 2024

In $218 million DOE-funded research project, scientists aim to make enhanced geothermal a key part of world’s energy portfolio. “The ability to tap more of the Earth’s natural heat through enhanced geothermal systems will expand access to affordable, secure and resilient clean energy for everyone,” say one expert.

A major University of Utah-led geothermal research project, funded by the U.S. Department of Energy (DOE), achieved a critical breakthrough in April after hydraulically stimulating and circulating water through heated rock formations a mile and a half beneath its drill site in the Utah desert and bringing hot water to the surface.

The test results are seen as an important step forward in the search for new ways to use Earth’s subsurface heat to produce hot water for generating emissions-free electricity.

The successful well stimulations and a nine-hour circulation test were the fruits of years of planning and data analysis at the Utah FORGE facility near Milford, 175 miles southwest of Salt Lake City.

More than two-thirds of the water that was injected underground and pushed through the fractured formation—acquiring heat on the way—was extracted from a second well, offering proof that enhanced geothermal systems (EGS) technology could be viable, according to John McLennan, a co-principal investigator on the project formally known as the Utah Frontier Observatory for Research in Geothermal Energy, or Utah FORGE.

“Nine hours is enough to prove that you have a connection and that you’re producing heat,” said McLennan, a U professor of chemical engineering. “It really is a Eureka moment. It’s been 60 years coming, and so this actually is significant.”

Importantly, the maximum induced earthquake from the tests was magnitude 1.9, falling well short of the threshold of the felt seismicity that has plagued other geothermal projects, according to FORGE’s principal investigator Joseph Moore, a professor of civil and environmental engineering.

Utah FORGE is a $218 million research project, involving numerous institutions and industry partners, funded by a DOE grant to the U’s Energy & Geoscience Institute. The project aims to develop and de-risk new geothermal technologies that could potentially be deployed all over the world, not just where conventional geothermal plants are sited.

“We are excited to have had such great success during our most recent stimulation and circulation testing,” Moore said. “Each test brings us closer to realizing the full potential of enhanced geothermal systems and the important role it will play in the world’s energy portfolio.”

Under its Energy Earthshots initiative, the Biden administration is looking to increase the U.S. geothermal electrical generating capacity from the current 3,700 megawatts to 90,000 by 2050, and lower the per megawatt-hour generating cost by 90% to $45 by 2035.