EnergyNovel nanosized antenna arrays key to effective harvesting of solar energy

Published 6 February 2013

For years, scientists have studied the potential benefits of a new branch of solar energy technology that relies on incredibly small nanosized antenna arrays that are theoretically capable of harvesting more than 70 percent of the sun’s electromagnetic radiation and simultaneously converting it into usable electric power. A novel fabrication technique could provide the breakthrough technology scientists have been looking for to improve today’s solar energy systems.

A novel fabrication technique developed by University of Connecticut  engineering professor Brian Willis could provide the breakthrough technology scientists have been looking for to improve today’s solar energy systems.

For years, scientists have studied the potential benefits of a new branch of solar energy technology that relies on incredibly small nanosized antenna arrays that are theoretically capable of harvesting more than 70 percent of the sun’s electromagnetic radiation and simultaneously converting it into usable electric power.

A University of Connecticut release reportsthat the technology would be a vast improvement over the silicon solar panels in widespread use today. Even the best silicon panels collect only about 20 percent of available solar radiation, and separate mechanisms are needed to convert the stored energy to usable electricity for the commercial power grid. The panels’ limited efficiency and expensive development costs have been two of the biggest barriers to the widespread adoption of solar power as a practical replacement for traditional fossil fuels.

While nanosized antennas have shown promise in theory, scientists have lacked the technology required to construct and test them. The fabrication process is immensely challenging. The nano-antennas — known as “rectennas” because of their ability to both absorb and rectify solar energy from alternating current to direct current — must be capable of operating at the speed of visible light and be built in such a way that their core pair of electrodes is a mere 1 or 2 nanometers apart, a distance of approximately one millionth of a millimeter, or 30,000 times smaller than the diameter of human hair.

The potential breakthrough lies in a novel fabrication process called selective area atomic layer deposition (ALD) that was developed by Willis, an associate professor of chemical and biomolecular engineering and the previous director of UConn’s Chemical Engineering Program. Willis joined UConn in 2008 as part of an eminent faculty hiring initiative that brought an elite team of leaders in sustainable energy technology to the University. Willis developed the ALD process while teaching at the University of Delaware, and patented the technique in 2011.

The release notes that it is through atomic layer deposition that scientists can finally fabricate a working rectenna device. In a rectenna device, one of the two interior electrodes must have a sharp tip, similar to the point of a triangle. The secret is getting the tip of that electrode within one or two nanometers of the opposite electrode, something similar to