• Phasing out nuclear energy could affect safety: Psychologists

    The way in which the phase-out of nuclear power plants in Germany is currently planned could negatively influence the safety of the facilities. Those involved could increasingly favor their own interests as the shutdown date approaches, a new study argues. They base their argument on the possibility of endgame behavior from game theory.

  • The federal government has long treated Nevada as a dumping ground, and it’s not just Yucca Mountain

    Nevadans can be forgiven for thinking they are in an endless loop of “The Walking Dead” TV series. Their least favorite zombie federal project refuses to die. In 2010, Congress had abandoned plans to turn Yucca Mountain, about 100 miles northwest of Las Vegas, into the nation’s only federal dump for nuclear waste so radioactive it requires permanent isolation. And the House recently voted by a wide margin to resume these efforts. While teaching and writing about the state’s history for more than 30 years, I have followed the Yucca Mountain fight from the beginning – as well as how Nevadans’ views have evolved on all things nuclear. The project could well go forward, but I believe that it probably won’t as long as there are political benefits to stopping it.

  • Fukushima-Daiichi radioactive particle release was significant: Study

    Scientists say there was a significant release of radioactive particles during the Fukushima-Daiichi nuclear accident. The researchers identified the contamination using a new method and say if the particles are inhaled they could pose long-term health risks to humans.

  • Scientists successfully vitrify three gallons of radioactive tank waste

    In a first-of-its-kind demonstration, researchers at the Department of Energy’s Pacific Northwest National Laboratory have vitrified low-activity waste from underground storage tanks at Hanford, immobilizing the radioactive and chemical materials within a durable glass waste form.

  • Pipe-crawling robot to help decommission nuclear facility

    A pair of autonomous robots will soon drive through miles of pipes at the U.S. Department of Energy’s former uranium enrichment plant in Piketon, Ohio, to identify uranium deposits on pipe walls. Shuttered since 2000, the plant began operations in 1954 and produced enriched uranium, including weapons-grade uranium. With 10.6 million square feet of floor space, it is DOE’s largest facility under roof — the size of 158 football fields, with 75 miles of process pipe.

  • Nuclear waste may soon be a thing of the past

    During the Cold War, the U.S. Department of Energy produced tons of nuclear material for the development of the nation’s nuclear weapons stockpile. Today, the United States is awash in radioactive material from weapons production and some from nuclear power plants that could take 100,000 years to go away. A recent FIU chemistry graduate might help researchers unlock the secrets to make nuclear waste safer.

  • Remotely monitoring nuclear reactors

    A new U.S. Department of Energy project to develop the first detector able to remotely monitor nuclear reactors will also help physicists test the next generation of neutrino observatories. Nuclear reactions produce telltale antineutrinos – the antimatter counterpart of neutrinos. The new detectors will be designed to measure the energy of such antineutrinos and the direction from which they come, allowing monitoring of reactors from a distance of 25 kilometers to verify nonproliferation agreements.

  • Efficient extraction may improve management of nuclear fuel

    After used nuclear fuel is removed from a reactor, it emits heat for decades and remains radioactive for thousands of years. The used fuel is a mixture of major actinides (uranium, plutonium), fission products (mainly assorted metals, including lanthanides) and minor actinides (i.e., americium, curium and neptunium). After the cesium-137 and strontium-90 fission products decay in a few hundred years, the minor actinides and plutonium generate the most heat and radioactivity. Removal of the minor actinides, especially americium, can help nuclear power producers reduce and better manage the waste stream.

  • Sandia transport triathlon puts spent nuclear fuel to the test

    Nuclear power supplies almost 20 percent of U.S. electricity and is the leading carbon-neutral power source. However, it produces between 2,200 and 2,600 tons of spent fuel in the United States each year. Fuel rods become brittle and highly radioactive while powering the nuclear reactor, making safe transportation important. Sandia National Laboratories researchers completed an eight-month, 14,500-mile triathlon-like test to gather data on the bumps and jolts spent nuclear fuel experiences during transportation.

  • Pipe-crawling robot to help decommission DOE nuclear facility

    A pair of autonomous robots developed by Carnegie Mellon University’s Robotics Institute will soon be driving through miles of pipes at the U.S. Department of Energy’s former uranium enrichment plant in Piketon, Ohio, to identify uranium deposits on pipe walls. The CMU robot has demonstrated it can measure radiation levels more accurately from inside the pipe than is possible with external techniques.

  • New evidence of nuclear fuel releases discovered at Fukushima

    Uranium and other radioactive materials, such as cesium and technetium, have been found in tiny particles released from the damaged Fukushima Daiichi nuclear reactors. This could mean the environmental impact from the fallout may last much longer than previously expected according to a new study by a team of international researchers. The team says that, for the first time, the fallout of Fukushima Daiichi nuclear reactor fuel debris into the surrounding environment has been “explicitly revealed” by the study.

  • Before the U.S. approves new uranium mining, consider its toxic legacy

    Uranium – the raw material for nuclear power and nuclear weapons – is having a moment in the spotlight. Companies such as Energy Fuels, Inc. have played well-publicized roles in lobbying the Trump administration to reduce federal protection for public lands with uranium deposits. The Defense Department’s Nuclear Posture Review calls for new weapons production to expand the U.S. nuclear arsenal, which could spur new domestic uranium mining. And the Interior Department is advocating more domestic uranium production, along with other materials identified as “critical minerals.” I have studied the legacies of past uranium mining and milling in Western states for over a decade. My book examines dilemmas faced by uranium communities caught between harmful legacies of previous mining booms and the potential promise of new economic development. These people and places are invisible to most Americans, but they helped make the United States an economic and military superpower. In my view, we owe it to them to learn from past mistakes and make more informed and sustainable decisions about possibly renewing uranium production than our nation made in the past.

  • Thorium reactors could dispose of large amounts of weapons-grade plutonium

    Scientists are developing a technology enabling the construction of high-temperature, gas-cool, low-power reactors with thorium fuel. The scientists propose to burn weapons-grade plutonium in these units, converting it into power and thermal energy. Thermal energy generated at thorium reactors may be used in hydrogen industrial production. The technology also makes it possible to desalinate water. 

  • FAA declares seven nuclear research facilities no-drone zones

    The Federal Aviation Administration (FAA) has granted a request from the Department of Energy (DOE) to declare seven DOE’s nuclear research facilities no-drone zones. Starting 29 December, drone operators would not be allowed to fly their UAVs within 400 feet of these facilities: The FAA said it is currently considering more “no-drone zone” requests from federal agencies.

  • Evacuating a nuclear disaster area is often a waste of time and money, says study

    Over 110,000 people were moved from their homes following the Fukushima nuclear disaster in Japan in March 2011. Another 50,000 left of their own will, and 85,000 had still not returned four-and-a-half years later. While this might seem like an obvious way of keeping people safe, my colleagues and I have just completed research that shows this kind of mass evacuation is unnecessary, and can even do more harm than good. We calculated that the Fukushima evacuation extended the population’s average life expectancy by less than three months. The reality is that, in most cases, the risk from radiation exposure if tpeople stay in their homes is minimal. It is important that the precedents of Chernobyl and Fukushima do not establish mass relocation as the prime policy choice in the future, because this will benefit nobody.