• Low level of worrisome resistant bacterium in U.S.

    A new multistate surveillance study by the Centers for Disease Control and Prevention (CDC) has found that the incidence of a multidrug-resistant bacterial pathogen capable of causing severe infections and spreading easily is low and mainly confined to healthcare facilities. And CDC officials would like to keep it that way. a team of researchers from the CDC and public health departments across the country report that the overall annual incidence of carbapenem-nonsusceptible Acinetobacter baumannii is 1.2 cases per 100,000 persons, and that nearly all the cases were healthcare-associated.

  • New framework for guiding controversial research still has worrisome gaps

    In December the Department of Health and Human Services (HHS) release lifted the funding moratorium on Gain of Function (GoF) research, following the controversial projects involving H5N1 in 2011. The “Framework for guiding funding decisions about proposed research involving enhanced potential pandemic pathogens” is similar to the January 2017 “P3C0 Framework,” and it came with the bonus of restoring funding for such research – but there are still considerable concerns with how GoF research is evaluated and if these frameworks have really addressed the gaps.

  • European health worries: High levels of drug resistance in zoonotic bacteria

    A surveillance report from European health and food safety agencies indicates that antibiotic resistance in zoonotic bacteria from humans, food, and animals on the continent remains at high levels, with notable levels of multidrug resistance in two common causes of foodborne illness in humans. Zoonotic bacteria are organisms that are transmissible between animals and humans, either through direct exposure or through consumption of contaminated meat.

  • Horsepox synthesis, dual-use research, and scientific research’s “action bias”

    Julius Caesar is said to have stated “alea iacta est” (the die is cast) as he led his army across the Rubicon river, triggering a point of no return in Roman history. In many ways, the horsepox synthesis, published by two Canadian scientists last month, is considered a new Rubicon for synthetic biology and the life sciences. Experts say that now that we’ve ventured across the river, it seems that we may be learning more about dual-use research in general. One expert notes that “Beyond the immediate issue of whether the horsepox work should have been performed (or published), the horsepox synthesis story highlights a more general challenge facing dual-use research in biotechnology: the unilateralist’s curse.” Research unilateralism contains an “action bias”: Horsepox synthesis is more likely to occur when scientists act independently than when they agree to a decision as a group.

  • S&T sponsors workshop on “sequences of interest”

    Synthetic biology has led to the creation of new products, markets, companies, and industries. At the same time, the technology poses potential risks to biosafety and biosecurity, as recently demonstrated by the synthesis of horsepox virus, a cousin of variola, the virus which causes smallpox. DHS S&T sponsored a workshop to discuss the evolving role of databases which contain genetic sequences of pathogens and toxins — termed “sequences of interest” — which pose safety or security concerns.

  • CDC: Flu still rising across U.S.; 16 more pediatric deaths

    We are not out of the woods yet,” said Anne Schuchat, the acting director of the Centers for Disease Control and Prevention (CDC), as she described the rising influenza activity that’s swept across the United States. According to Schuchat, this past week brought yet another increase in influenza-like illness (ILI) activity, a spike in hospitalizations, and, most distressingly, 16 new reports of pediatric influenza deaths. Now 53 pediatric deaths this season have been attributed to the flu. The last season as severe as this year’s was in 2014-15, but at this point in that season the cumulative hospitalization rate was 43.5 per 100,000 population. This week that number was 51.4 per 100,000 population, according to the latest FluView surveillance data published by the CDC.

  • WHO: Widespread, high levels of antibiotic resistance across the globe

    New surveillance data released earlier this week by the World Health Organization (WHO) reveals widespread and in some cases high levels of antibiotic resistance across the globe in the most common bacterial infections. “The report confirms the serious situation of antibiotic resistance worldwide,” Marc Sprenger, MD, director of the WHOs Antimicrobial Resistance Secretariat, said in a press release. “Some of the world’s most common—and potentially most dangerous—infections are proving drug-resistant.”

  • Synthetic virus tackles antimicrobial resistance

    Antibiotic resistance has become an ever-growing global challenge, with more than 700,000 people across the world dying from drug resistant infections every year. As a result, antibiotic discovery has fallen well behind its historical rate, with traditional discovery methods being exhausted. Scientists have engineered a brand new artificial virus that kills bacteria on first contact. This new virus is built using the same geometric principles that determine structures of naturally occurring viruses, known as polyhedral capsids.

  • Step-by-step horsepox study intensifies dual-use research debate

    The publication last week of a research paper offering a manual for re-creating an orthopoxvirus has been harshly criticized by both scientists and biosecurity experts as reckless and dangerous. The research demonstrates the potential to recreate the virus that causes smallpox—one of the greatest scourges the world has ever faced and eradicated. “The risks posed by the publication of methods that could ease the pathway for synthesizing smallpox should have been carefully weighed from the outset,” says one expert. Analysts say that the publication further accentuates the need for urgent global dialogue to develop clear norms and actions for reducing biological risks posed by advances in technology. “As governmental oversight continues to lag behind biotechnology breakthroughs, academic and private stakeholders conducting, funding, and publishing research - as well as those developing new technologies – also must take responsibility for mitigating risk,” says the expert.

  • The synthesis of horsepox virus and the failure of dual-use research oversight

    On 19 January 2018, the open access scientific journal PLOS One published an article that describes the de novo synthesis of horsepox virus, the first ever synthesis of a member of the orthopoxvirus family of viruses that includes the variola virus that causes smallpox. This research crosses a red line in the field of biosecurity. Given the high degree of homology between orthopoxviruses, the techniques described in this article are directly applicable to the recreation of variola virus. The synthesis of horsepox virus takes the world one step closer to the reemergence of smallpox as a threat to global health security. The reemergence of smallpox would be a global health disaster. Prior to its eradication, smallpox killed an estimated 300 million people, more people than all the wars of the twentieth century combined. Based on these considerations, the horsepox synthesis research is all risk and no reward. Given the known risks of this research for pioneering a technique that can be used to recreate variola virus and its questionable benefits, the publication of this article represents a failure of PLOS One to exercise its responsibility to carefully consider the biosecurity implications of the research it publishes.

  • Flu hospitalizations climb as U.S. season hits new heights

    Flu hospitalizations across the United States are still increasing, and at least by one metric the season has reached a height not seen since the 2009-10 pandemic, according to the latest data from the Centers for Disease Control and Prevention’s (CDC’s). In addition, despite elderly adults being the most hospitalized group, they often do not receive influenza tests, new research shows.

  • Flu spreads by aerosols, not just coughs, sneezes

    It is easier to spread the influenza virus (flu) than previously thought, according to a new study. People commonly believe that they can catch the flu by exposure to droplets from an infected person’s coughs or sneezes or by touching contaminated surfaces. But, new information about flu transmission reveals that we may pass the flu to others just by breathing.

  • Ban on deadly pathogen research lifts, but controversy remains

    “Those who support such research think that it is necessary to develop strategies to fight rapidly evolving pathogens that pose a threat to public health, such as the flu virus, the viruses causing Middle East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS), or Ebola,” says Marc Lipsitch of Harvard Chan School. “But others, like myself, worry that human error could lead to the accidental release of a virus that has been enhanced in the lab so that it is more deadly or more contagious than it already is. There have already been accidents involving pathogens. For example, in 2014, dozens of workers at a U.S. Centers for Disease Control and Prevention lab were accidentally exposed to anthrax that was improperly handled. Another accident like that—if it involved a virus that was both newly created and highly contagious—has the potential to jeopardize millions of people.”

  • Supercharged antibiotics could combat superbugs

    Antibiotic-resistant bacteria – superbugs – cause 700,000 deaths worldwide each year, and a UK government review has predicted this could rise to 10 million by 2050. An old drug supercharged by researchers has emerged as a new antibiotic that could destroy some of the world’s most dangerous superbugs.

  • Antibiotic alternatives should focus on mild infections: Experts

    Given the challenge of discovering and developing new antibiotics for the most serious multidrug-resistant pathogens, and how quickly antibiotic resistance can emerge, scientists and biotechnology companies have in recent years turned their attention to alternative therapies to target these bacteria. These antibiotic alternatives include bacteriophages, phage lysins, antimicrobial peptides, antibodies, probiotics, and vaccines. The hope is that, ultimately, products other than classic antibacterial agents will help provide a long-term solution to the antibiotic resistance crisis. Yet, many of these alternative therapies are a long way off, and even those in phase 2 and 3 clinical trials will likely be used as adjuncts to antibiotics, rather than true alternatives.