-
Protecting bulk power Systems from hackers
Most of us take turning the lights on for granted. In reality, the energy we draw from the electrical grid to brighten homes, freeze food and watch TV is part of a complicated and widespread system. Understanding that system’s vulnerabilities and reliability is a crucial step towards improving its security. Reliability measures of electrical grid has risen to a new norm as it involves physical security and cybersecurity. Threats to either can trigger instability, leading to blackouts and economic losses.
-
-
Microgrids spread globally
To a greater or lesser extent, every business needs access to reliable and economical sources of power. It is an additional bonus for some if that electricity can be generated using renewable sources. Modern technology allows businesses to meet these needs themselves, producing energy as well as consuming it locally, creating flexible networks known as “microgrids.” Microgrids are spreading globally, driven by technological, regulatory, economic, and environmental factors. Siemens helps build and get the best from these modern energy systems.
-
-
Why artificial intelligence could be key to future-proofing the grid
The expansion of renewable energy, mainly from wind and solar power, is a good thing — but one problem with this great expansion in renewables is they are intermittent, meaning they depend on weather conditions such as the wind blowing or sun shining. Unlike conventional power, this means they can’t necessarily meet surges in demand. Hence many press headlines in recent years about the “lights going out.” One solution to the problem is known as demand-side response. One aspect involves rewarding certain electricity consumers for reducing their usage at short notice. This can range from large industrial customers to smaller consumers using power for heating rooms, cooling, lighting or even refrigeration. Emerging artificial intelligence technologies look like providing answers to the challenges of effectively managing demand-side systems. To select the best participants, for example, grid operators will be able to use sophisticated machine-learning techniques to model the behavior of individual devices and battery storage units by reviewing data from smart meters and sensors.
-
-
Off-grid power in remote areas will require special business model to succeed
Around the world, more than 1.2 billion people lack access to basic electricity service. The majority of those people are living in developing nations, in rural or isolated areas with high rates of poverty. Steep costs and remote terrain often make it impractical or even impossible to extend the electric grid. Low-cost, off-grid solar energy could provide significant economic benefit to people living in some remote areas, but a new study suggests they generally lack the access to financial resources, commercial institutions and markets needed to bring solar electricity to their communities.
-
-
Restoring power to a grid facing a cyberattack
Currently, utility companies in North America have procedures and capacity to handle localized power outages caused by events such as extreme weather and high usage on hot days. However, there are not any tools available to resolve the type of widespread outages that can be caused using malware. Researchers from SRI International are leading a collaborative team to develop cutting-edge technology that can be used by utilities and cyber first responders to restore power to an electric grid that has come under a cyberattack.
-
-
INL’s more adaptive grid better for testing new technologies
Essential services like power distribution require reliable service and continuous operations. The power grid on the U.S. Department of Energy’s Idaho Site is being transitioned to a more adaptive architecture to enable greater flexibility in testing new ideas and technologies.
-
-
Investor-owned utilities better prepared to handle catastrophic weather
Investor-owned utility companies may be better prepared than municipal utility companies to deal with catastrophic weather conditions and subsequent power outages. One of the main arguments made in favor of municipal utilities is the alleged poor performance of investor-owned utilities after major storms. The author of a new study says, however, that “compared with investor-owned utilities, municipal utilities spend more on maintenance of power distribution lines, yet deliver worse customer service after major storms.”
-
-
S&T, NASA show online tool to help prepare for solar storms
When solar storms release solar flares and coronal mass ejections (CME) toward Earth, we can feel the effects here on the ground. They can interfere with Earth’s magnetic field and produce geo-magnetically induced currents. These currents impact our electric grid and can cause permanent damage to critical grid components, including high-voltage transformers. While we cannot stop solar storms and CMEs, we can mitigate their effect on the electric grid.
-
-
Strengthening U.S. infrastructure to withstand disasters
The delivery of essential services — whether in food, water, health, or emergency response — relies increasingly upon a complex, interconnected system of critical infrastructure. Ensuring these interdependent systems continue to operate during disasters and other disruptive events is crucial to maintaining public health and safety. NSF announces $22.7 million in new investments to promote better understanding and functioning of these infrastructures in an effort to improve their resilience.
-
-
The smart grid makes it easier for hackers to turn out the lights
The development of the smart power grid and the smart meter in our homes to accompany it brings several benefits, such as improved delivery and more efficient billing. Conversely, any digital, connected technology also represents a security risk. The smart electricity grid is more vulnerable to accidental and incidental problems with the flow of data, and to malicious manipulation for the sake of sabotage, criminal, or online military or terrorist action.
-
-
Mapping, quantifying the risks space-weather poses to electric-power grids
The vulnerability of modern society to geoelectric hazards was demonstrated in March 1989, when an intense magnetic storm caused the collapse of the entire Canadian Hydro-Québec power-grid system, leaving six million people without electricity for nine hours. Scientists recently published research — including maps covering large areas of the United States — showing how the effects from intense geomagnetic storms are impacted by the Earth’s electrical conductivity. This is one of the first steps toward mapping nation-wide “induction hazards.”
-
-
Electric grid vulnerabilities in extreme weather areas
Climate and energy scientists at the DoE’s Oak Ridge National Laboratory have developed a new method to pinpoint which electrical service areas will be most vulnerable as populations grow and temperatures rise. The scientists’ integrated approach – combining ORNL’s unique infrastructure and population datasets with high-resolution climate simulations run on the lab’s Titan supercomputer — identifies substations at the neighborhood level and determines their ability to handle additional demand based on predicted changes in climate and population.
-
-
Increasing power grid cybersecurity
Cybersecurity experts are leading a new program to develop new data analysis methods better to protect the nation’s power grid. The goal of this project is to develop technologies and methodologies to protect the grid from advanced cyber and threats by developing the means to distinguish between power grid failures caused by cyber attacks and failures caused by other means, including natural disasters, “normal” equipment failures, and even physical attacks.
-
-
Understanding California electricity crisis may help prevent future crises
Between 2000 and 2001, California experienced the biggest electricity crisis in the United States since the Second World War. Exactly how it happened, however, is complex. New research now reveals insights into the market dynamics at play, potentially helping regulators standardize the market and prevent future crises.
-
-
Leaving the electrical grid in the Upper Peninsula
While Michigan’s Upper Peninsula is not the sunniest place in the world, solar energy is viable in the region. With new technologies, some people might be inclined to leave the electrical grid. Researched looked into the economic viability of grid defection in the Upper Peninsula, and found that by 2020, leaving the electrical grid is a viable economic option for the majority of seasonal households (92 percent) as well as single-family owner-occupied households (65 percent).
-