Graphene foam detects explosives better than gas sensors
commonly in our pencils or the charcoal we burn on our barbeques, graphene is an atom-thick sheet of carbon atoms arranged like a nanoscale chicken-wire fence. The walls of the foam-like graphene sensor are comprised of continuous graphene sheets without any physical breaks or interfaces between the sheets.
The release notes that Koartkar and his students developed the idea to use this graphene foam structure as a gas detector. As a result of exposing the graphene foam to air contaminated with trace amounts of ammonia or nitrogen dioxide, the researchers found that the gas particles stuck, or adsorbed, to the foam’s surface. This change in surface chemistry has a distinct impact upon the electrical resistance of the graphene. Measuring this change in resistance is the mechanism by which the sensor can detect different gases.
Additionally, the graphene foam gas detector is very convenient to clean. By applying a ~100 milliampere current through the graphene structure, Koratkar’s team was able to heat the graphene foam enough to unattach, or desorb, all of the adsorbed gas particles. This cleaning mechanism has no impact on the graphene foam’s ability to detect gases, which means the detection process is fully reversible and a device based on this new technology would be low power — no need for external heaters to clean the foam — and reusable.
Koratkar chose ammonia as a test gas to demonstrate the proof-of-concept for this new detector. Ammonium nitrate is present in many explosives and is known to gradually decompose and release trace amounts of ammonia. As a result, ammonia detectors are often used to test for the presence of an explosive. A toxic gas, ammonia also is used in a variety of industrial and medical processes, for which detectors are necessary to monitor for leaks.
Results of the study show the new graphene foam structure detected ammonia at 1,000 parts-per-million in 5 to 10 minutes at room temperature and atmospheric pressure. The accompanying change in the graphene’s electrical resistance was about 30 percent. This compared favorably to commercially available conducting polymer sensors, which undergo a 30 percent resistance change in 5 to 10 minutes when exposed to 10,000 parts-per-million of ammonia. In the same time frame and with the same change in resistance, the graphene foam detector was ten times as sensitive. The graphene foam detector’s sensitivity is effective down to 20 parts-per-million, much lower than the commercially available devices. Additionally, many of