One solution to the aging U.S. grid: microgrids

components like large utility-scale inverters. We’ll also be able to scale up the complexity of our testing. Using the Research Electrical Distribution Bus [REDB], and hardware-in-the loop, we’ll be able to connect dozens of sources and loads and be able to test their interactions with each other. Now, we collect single data points. At ESIF, we’ll be able to collect high-speed, time-synchronized data at numerous points throughout the REDB.”

Using a high-performance computing data center, NREL will be able to simulate entire distribution systems. When testing a microgrid system, engineers can monitor its voltages and frequencies at the point where it joins the distribution system, enabling them to simulate the effect of a microgrid on the larger utility. This is important, because being physically connected to the grid is often not practical — plus, the utility doesn’t have to worry about putting an unproven technology on their system.

Utilities see this as a growth area, and they would like to understand it,” Shirazi said. “Even if they aren’t implementing a microgrid themselves, they may want to understand how it works for those customers who do want to install one on a section of their distribution system. Working with NREL helps them implement this type of system without impacting their customers.”

NREL’s grid simulators make this testing possible without hooking up the equipment to the regional utility grid — which would be prohibitively tricky. First, researchers would need the foresight to know when voltage anomalies were going to happen, and assuming they could catch them, there would be only one chance to test equipment. With grid simulators, researchers can create voltage and frequency anomalies and see how the system behaves.

ESIF is going to give us more research power, both in the actual electrical power but also in the ability to collect data across all points in the system,” Martin said. “It will also offer really awesome visualization that will enable us to look at data coming in from different places, to look at simulations and video feeds, in a really nice, easy, big way. We’re sure this visualization capability will help ignite collaborations among NREL, industry, utilities, academia, and government agencies.”

ESIF is really going to move us forward to the next generation of power systems in this country,” Kroposki said. “There is consensus that our utility grid is aging and that we can get benefit out of making it more intelligent, efficient, and capable of accepting more sources of energy.”