Big DataConverting Big Data into Real-Time, Actionable Intelligence

Published 17 October 2019

Social media, cameras, sensors and more generate huge amounts of data that can overwhelm analysts sifting through it all for meaningful, actionable information to provide decision-makers such as political leaders and field commanders responding to security threats. Researchers are working to lessen that burden by developing the science to gather insights from data in nearly real time.

Social media, cameras, sensors and more generate huge amounts of data that can overwhelm analysts sifting through it all for meaningful, actionable information to provide decision-makers such as political leaders and field commanders responding to security threats.

Sandia National Laboratories researchers are working to lessen that burden by developing the science to gather insights from data in nearly real time.

“The amount of data produced by sensors and social media is booming — every day there’s about 2.5 quintillion (or 2.5 billion billion) bytes of data generated,” said Tian Ma, a Sandia computer scientist and project co-lead. “About 90% of all data has been generated in the last two years — there’s more data than we have people to analyze. Intelligence communities are basically overwhelmed, and the problem is that you end up with a lot of data sitting on disks that could get overlooked.”

Sandia says that the Lab’sresearchers worked with students at the University of Illinois Urbana-Champaign, an Academic Alliance partner, to develop analytical and decision-making algorithms for streaming data sources and integrated them into a nearly real-time distributed data processing framework using big data tools and computing resources at Sandia. The framework takes disparate data from multiple sources and generates usable information that can be acted on in nearly real time.

To test the framework, the researchers and the students used Chicago traffic data such as images, integrated sensors, tweets and streaming text to successfully measure traffic congestion and suggest faster driving routes around it for a Chicago commuter. The research team selected the Chicago traffic example because the data inputted has similar characteristics to data typically observed for national security purposes, said Rudy Garcia, a Sandia computer scientist and project co-lead.

Drowning in Data
“We create data without even thinking about it,” said Laura Patrizi, a Sandia computer scientist and research team member, during a talk at the 2019 United States Geospatial Intelligence Foundation’s GEOINT Symposium. “When we walk around with our phone in our pocket or tweet about horrible traffic, our phone is tracking our location and can attach a geolocation to our tweet.”

To harness this data avalanche, analysts typically use big data tools and machine learning algorithms to find and highlight significant information, but the process runs on recorded data, Ma said.