We Simulated How a Modern Dust Bowl Would Impact Global Food Supplies and the Result Is Devastating

Cascading Shocks
According to the recent simulation, a decline in US wheat production of the same magnitude as occurred during the Dust Bowl (about 30 percent over four consecutive years), would deplete nearly all wheat reserves in the US and reduce global stocks by 31 percent. Since the U.S. is one of the world’s largest exporters of wheat and has many trade links, nearly all countries would be affected.

Lower wheat reserves could cause a shortage of products like flour, pasta and bread, making them too expensive for many to buy, especially in poorer countries. Even if a country doesn’t trade wheat with the US directly, the cascading effects of the production shock could be felt through other trading partners. Countries seeking to meet their needs with limited supply from the US would need to increase imports from elsewhere and decrease their exports, passing on the disruption to other trade partners.

As global food reserves shrink, it leaves the world even more exposed to future shocks. Without this buffer, wheat products are likely to be rationed, directly raising global food prices.

The dust bowl simulation illustrates how trade can transmit the consequences of production shocks in one part of the world to countries far away. But global trade is a double-edged sword. It can help overcome temporary shortages in local supply and enable a rich and nutritious diet. Globalization has moved food production to regions where it’s more efficient – whether in terms of economic cost or resources like land and water. This has helped save cropland and water and allowed populations to prosper even where local resources are scarce.

Building Resilience
The COVID-19 pandemic has already led to some countries restricting food exports, with the potential for shortages. But the risks of climate change causing shocks in food production are looming too.

The warming climate intensifies extreme weather such as droughts, floods and storms, and increases the risk of simultaneous crop failures around the world. At the start of 2020, unusually wet weather helped breed Kenya’s worst locust outbreak for more than 70 years, which has the potential to consume vast acres of crops.

But even with so much uncertainty and risk, it’s hard to imagine people giving up the benefits of a global food system. Would any of us really want to go back to a time when we couldn’t enjoy food from distant places and different climates at any time of year?

But perhaps we should question the desire for efficiency that has driven the current system and instead aim to build one that can withstand shocks.

Small-scale farmers plant several different crops to ensure the failure of one isn’t a catastrophe. The same principle can be applied on a much larger scale to the global food system. Procuring a diverse range of staple foods and sources for growing them can help to ensure that the failure of one component – whether it’s one protein source or one trading partner growing it – can be compensated by another.

The modern dust bowl simulation can help to illuminate some of the systemic risks in the global food system, but the COVID-19 pandemic is a better demonstration of how fragile our hyperconnected world is. Rather than try to revert to the way things were before the crisis, countries should seize the opportunity to transform this system to something more resilient, so that when the next major disruption hits, we’ll be prepared.

Miina Porkka is Postdoctoral Researcher in Water and Food System Resilience, Stockholm University. Alison Heslin is Postdoctoral Researcher in Agriculture and Environmental Change, Columbia University. Matti Kummu is Associate Professor in Global Water Issues, Aalto University. This article is published courtesy of The Conversation.