FireAddressing Risk, Safety in Fire Containment

Published 30 September 2020

As 2020 has shown, wildfire frequency, size and severity are threatening communities and natural resources across the western U.S. As a result, there is a high demand for decision-making to mitigate risk, improve firefighter safety and increase fire containment efficiency.

As 2020 has shown, wildfire frequency, size and severity are threatening communities and natural resources across the western U.S. As a result, there is a high demand for decision-making to mitigate risk, improve firefighter safety and increase fire containment efficiency.

The Colorado Forest Restoration Institute (CFRI) at Colorado State University has been working with the USDA Forest Service Rocky Mountain Research Station (RMRS) to address these interrelated needs in fire and land management. Three recent publications from the research team address new ways to assess risks and evaluate firefighting effectiveness.

Managers are making tough decisions about how to contain and control fires with limited time and information,” said Ben Gannon, CFRI researcher and lead author on two of the studies. “This research is focused on supporting the development of risk-informed fire management strategies with a better understanding of fire effects and opportunities for firefighters to safely and effectively suppress fire.”

The three publications cover topics ranging from what happens before and during a fire to after-incident review of the effectiveness of containment. Researchers said they hope this growing partnership will open up new areas of study in fire management.

Defining Potential Operational Delineations
Potential fire Operational Delineations, or PODs, are spatial fire management units bounded by control features such as roads, rivers and fuel types. Containing wildfires with pre-existing control features is a long-standing practice in fire management but identifying these units for pre-fire planning is a relatively new concept.

Matt Thompson with the RMRS Wildfire Risk Management Science Team is the lead author of the study that introduces a decision support prototype to help fire and land managers quickly gather a wide variety of information to guide suppression strategy development at the POD scale. He said the tools his team created should help managers tailor fire suppression responses to local conditions.

The POD summary and atlas really gets at the preparatory stage, or the idea of engaging the fire before it starts,” Thompson said. “The intentions are to reduce time pressures and uncertainties, and expand options for incident response decisions.”

The decision support tools will help organize information on ecological and social factors that managers need to be aware of, such as water supplies, wildlife habitat, cultural resources, fuel loads and land features. The team engineered the atlas to be visual and map-based so that fire managers can quickly adapt on the ground. Contributing author Mike Caggiano said the power in the tool is found in its ability to address complexities.