Students Collaborate to Solve Homeland Security Challenges

“Soft targets can be executed with little or no planning or expertise, and they’re often able to remain undetected until operational,” Mirghahari said. “Together with the massive amount of soft target locations it presents a significant security challenge.”   

He used the example of the Super Bowl to illustrate the substantial number of possible soft targets.

“Instead of potentially targeting the actual Super Bowl there are pregame and lead-up events around the city and near the site, which do not have the (same) security posture as the main event,” he said.

Mirghahari then discussed the importance of design challenges such as this one to give students the opportunities to “engineer the next solutions and ideas.”

The city of Phoenix Police Department and personnel from their Homeland Defense Bureau and Arizona Fusion Center provided technical expertise and resources for planning the event. Sgt. Chris Scranton from Phoenix PD’s Homeland Defense Bureau led the planning efforts and acted as a mentor, providing a local law enforcement perspective to the challenge of soft targets.

At the beginning of the event, students organized themselves into hybrid teams of expertise across major academic disciplines and universities. They then named their teams, selected their scenario of choice and developed strategic approaches to the challenge statements.

Academic mentors were led by Ross Maciejewski, Center for Accelerating Operational Efficiency director and associate professor in ASU’s School of Computer, Informatics and Decision Systems Engineering; Dan McCarville, Center for Accelerating Operational Efficiency associate director of education and professor of practice in the School of Computer, Informatics and Decision Systems Engineering; and Mohamed Trabia, associate dean for research, graduate studies and computing at UNLV. They were joined by noted industry and government experts to provide the eight competing teams with hands-on guidance and feedback during the challenge. 

Over 30 students and 15 judges and mentors worked hard over the three-day challenge to offer creative solutions to hardening soft targets. 

The Winning Teams
First place: Team RAM, ASU
Elisa Magtoto, computer science; Maya Muir, computer science and math; Mohan Parekh, mechanical engineering; Zain Sidhwa, business data analytics; Mitchell Laukonen, computer science.

The team developed a mechanical barrier device for marathon event protection. It was designed as a mobile, easily transportable, cost-effective layered system that allowed for future technological integration. The presentation included a prototype of their design.

Second place: SECURiVISION, UNLV
Jannelle Domantay, computer science; Yuria Mann, computer science; Dylan Obata, computer science.

SECURiVISION proposed a solution addressing equipment and human factor vulnerabilities in securing water facilities from attack including insider threats using blockchain and machine learning capabilities.

Third place: Tie
Project NEMO, ASU and UNLV
Curtiss Brouthers, graduate student, learning sciences, ASU; Abraham Castaneda, electrical engineering, UNLV; Zeinab Mohammed, graduate student, engineering management, ASU; Niranjana Venkatesan, mechanical engineering, UNLV.

The group incorporated an environmental design approach as an ecosystem to protect municipal water facilities. Their concept spanned from employee credential validation to application and integrity of cyber firewalls.

BAWaN, ASU
Andrew Desos, mechanical engineering; Alexander Hollar, chemical engineering; Nihar Masurkar, graduate student, robotics and autonomous systems, mechanical and aerospace engineering; Will Noll, biomedical engineering; Ben Weber, aerospace engineering

BAWaN designed deployable vehicle barricades for marathon security, a strong steel structure with sensor ability for adapting to various vehicle sizes. The presentation included a prototype of their design.