National Security Consequences of Climate Change

Having access to geospatial datasets and situational awareness information before disaster strikes enables emergency managers to plan evacuations or other mitigation measures as necessary. The BEC group generates critical infrastructure datasets and develops models and algorithms tailored to specific communities and scenarios to help forecast climate impacts and prevent economic losses, as well as injuries and fatalities.

“We’re looking at resilience from physical, sociocultural and technological dimensions,” Kar said. “Evaluating the physical conditions of infrastructure in the context of climatic conditions and sociocultural factors allows us to study how these factors change and affect people under different scenarios at a certain location.”

Currently, Kar is studying how hydro-meteorological events affect individuals and energy infrastructure over time. Along with her collaborators, she identifies potential weak points along the energy supply chain, where unexpected interruptions during extreme climate events could lead to power outages.

Kar is also part of the Global Flood Modeling and Alerting project, which is funded by the NASA Disasters program. Using algorithms that combine hydrological models and remote sensing data sets, the project team forecasts flood severity and identifies regions across the globe that have a high probability of experiencing flooding based on previous climate events and typical precipitation levels.

This study generates flood severity alerts that are disseminated internationally to residents and policy makers through DisasterAWARE, a platform created by University of Hawaii researchers that has 2 million users and provides daily forecasts for more than 15 types of climate events.

 As part of the Situation-Temporal Awareness Tool for Integrated Oil and Natural Gas Systems and Restoration of Power Outage from Wide-area Severe Weather Disruptions projects funded by DOE’s Office of Cybersecurity, Energy Security, and Emergency Response, or CESER, Kar contributes to the development of models and simulations that help estimate the time needed to restore power following an extreme climate event, as well as the duration of liquid fuel availability at gas stations on evacuation routes and throughout the supply chain. These projects contribute to CESER’s Environment for Analysis of Geo-Located Energy Information program.

Modeling Population at Unprecedented Scale
Scientists in ORNL’s Human Geography Group apply geographic data science and computational methods to better understand the distribution and dynamics of populations around the world. Historical and current population trends based on demographic distributions and behavior related to human mobility during daytime and nighttime hours provide a baseline for communities at risk of facing environmental hazards.

“The Human Geography Group is uniquely positioned to address global human security through our scalable population modeling and research to expose current and future inequities and vulnerabilities across the human landscape,” said Group Leader Marie Urban. “Our goal is to continue leading population dynamics research, not only in support of DOE’s national security mission, but also in support of the humanitarian community, policy makers and stakeholders in development of a more sustainable future.”

ORNL’s LandScan population modeling program, which is funded by the National Geospatial-Intelligence Agency, builds on U.S. Census data to provide a more granular picture of populations in residential areas, office buildings, schools and other common commuter destinations. LandScan researchers develop algorithms to evaluate population movements based on daily schedules, as well as long-term migration patterns.

These algorithms model human activity, accounting for different sociocultural, economic and demographic factors around the world that influence where people are located throughout the course of a day. The various patterns throughout the landscape, particularly changes that occur between daytime and nighttime, are captured in LandScan to provide a better understanding of population distributions. Analyzing these routines helps researchers study how unwarned populations at home, at work, in the classroom and elsewhere in a given city would fare against sudden security threats caused by the rapid onset of a climate disaster.

“LandScan was designed to help governments and scientists plan ahead and study the potential impacts of natural disasters — such as hurricanes, tsunamis, earthquakes and landslides — and technological disasters, such as oil spills,” said LandScan Program Director Amy Rose. “For example, some of our federal users integrate LandScan data sets with hurricane tracks and forecasts, as well as other critical infrastructure data, to provide policy makers with estimates of how the hurricane will affect the residential population and economy of a community.”

The LandScan team also examines how rising sea levels and other phenomena are likely to alter city growth and coastal topology in the long term.

Building Toward Energy and Environmental Justice
Using the UrbanPop framework, researcher Joe Tuccillo develops high-resolution recreations of the social makeup of Census block groups containing 600–3,000 people. This data can help proponents of energy and climate justice identify neighborhoods and communities that may lack access to clean energy sources or be disproportionately harmed by natural disasters and other environmental and national security consequences of climate change over time.

UrbanPop, which has received funding through ORNL’s Laboratory Directed Research and Development program and DOE’s National Virtual Biotechnology Laboratory, uses sample survey responses provided by the U.S. Census Bureau’s American Community Survey to estimate the composition of these groups. This data enables researchers to study the general demographic characteristics and behavioral trends of people in different geographic areas — information that can be used to assess a group’s risk and preparedness for climate-related threats — while preserving the privacy of individual respondents.

“The goal is to create aggregate representations of what communities are like in terms of individual demographics and behavior, which provide insights into collective activity patterns,” Tuccillo said.

Research scientist Christa Brelsford focuses on human-environment interactions from another angle. She models how the location and arrangement of buildings in the year 2050 will affect environmental factors such as temperature, humidity and wind speed worldwide.

She is particularly interested in learning how these changes might influence daily life, especially for communities located in economically and physically disadvantaged areas that may be more susceptible to flooding, air pollution and other environmental hazards.

“It’s important for us to consider that the worst implications of all these adverse climate effects are most likely to be felt by the people who are already the most vulnerable,” Brelsford said.

In addition to developing new integrated modeling frameworks, Brelsford is examining existing population projections to determine the environmental footprint of major cities more than 30 years from now.

The expected influx of millions of new residents into cities around the world will have numerous consequences, including significant changes to each location’s “microclimate.” These small-scale but potentially devastating phenomena could include heatwaves and urban heat islands, which occur when cities endure higher temperatures than the surrounding areas because of the prevalence of manufactured structures that absorb more heat than natural surfaces.

Brelsford’s research is supported by the Integrated Multisector Multiscale Modeling project, which is funded by the MultiSector Dynamics program area in DOE’s Biological and Environmental Research office.

Through these research efforts, Christopher, Kar, Urban, Rose, Tuccillo, Brelsford and many others across ORNL aim to provide leaders at every level with the data and information they need to mitigate environmental threats and make informed national security decisions, both domestically and abroad.