SATELLITESBuild-a-Satellite Program Could Fast Track National Security Space Missions

Published 15 June 2022

Satellites equipped with remote sensing technology execute many critical national security missions, from detecting explosions to tracking sea ice, but until now it could take a team years to move from a concept to a deployable space system. High-performance computing enables custom satellite design and analysis in weeks.

Satellites equipped with remote sensing technology execute many critical national security missions, from detecting explosions to tracking sea ice, but until now it could take a team years to move from a concept to a deployable space system.

Valhalla, a Python-based performance modeling framework developed at Sandia National Laboratories, uses high-performance computing to build preliminary satellite designs based on mission requirements and then runs those designs through thousands of simulations. The results of the simulations feed into an interactive multidimensional video-like view of satellites executing their mission and hundreds of plots that show the user the relationship between each of the outputs and inputs at a glance. This data enables the user to quickly find the solution that best executes the mission.

Valhalla has already been used to explore space systems for enhanced Arctic security, study the effects of neuromorphic computing on space system design, simulate tracking and monitoring a hypothetical refugee rescue mission in the Mediterranean Sea and other satellite missions.

James Meub, Valhalla project lead and aerospace engineer, said a multidisciplinary team typically takes months, or even years, to produce a preliminary design for a remote sensing satellite or to determine how existing satellites would perform during a new mission. The team writes mission requirements based on what the satellites will need to detect and observe, then optical engineers design the payload and aerospace engineers design a host vehicle.

“The ability to understand how design decisions and requirements affect these simultaneous activities is iterative, time-consuming and essential to producing a reliable solution,” Meub said. “Valhalla short-circuits this process by using high-performance computing to help the user produce a preliminary design for a satellite or space system in weeks, and it can also show how groups of nonidentical satellites with different features will perform in new combinations and scenarios.”

Increasingly, a group of small satellites working as a system instead of one large satellite is being considered for remote sensing missions, Meub said.