PANDEMICSPublic Health Tool Predicts Effects of a Pandemic and Mitigation Efforts

Published 1 September 2022

Epidemiologists and public health officials have a new predictive tool to analyze the course of pandemics.

Epidemiologists and public health officials have a new predictive tool to analyze the course of pandemics, thanks to a mathematical formula derived by a University of Alabama in Huntsville (UAH) professor in partnership with a collaborator who is a UAH alumnus.

In work a journal reviewer referred to as seminal, they provide a mathematical solution to a model which describes chemical autocatalysis. Based on an analogy they draw between autocatalysis and epidemiology, their formula accurately predicts the future spread of a pandemic, as well.

The formula, which the researchers say is simple to evaluate, can be used to judge the effects of various mitigation measures designed to stem the epidemic. As such, they say it can aid public health authorities in their efforts to deploy resources to mitigate a pandemic’s effects.

Created by Dr. James Baird, professor of chemistry at UAH, a part of the University of Alabama System, and Dr. Douglas A. Barlow (Ph.D., materials science, 2003) of Alderman Barlow Laboratories in Trenton, Fla., the formula calculates the spread of diseases of either viral or bacterial origin and takes into account the effects of various mitigation efforts such as masking, social distancing, quarantine, vaccination rates and the efficacy of medical treatment.

Chemical transformations are autocatalytic when a catalyst molecule combines with a reactant molecule to produce more catalyst molecules, a result that serves to accelerate the reaction.

“In this sense, an autocatalytic reaction is completely analogous to the spread of an infectious disease,” Dr. Baird says. “In the disease case, contact between a susceptible individual and an infectious individual results in two infected individuals.”

According to Dr. Baird, the formula he derived with Dr. Barlow is a highly accurate approximate solution to the mathematical theory of epidemics developed in 1927 by the British scientists W. O. Kermack and A. G. McKendrick, who published their results in the Proceedings of the Royal Society . Kermack was a biochemist and McKendrick was a British army physician, whose mathematical intuition rivaled that of many professionals.

“Kermack and McKendrick showed that, if the rate of transfer of the infectious organism was faster than the rate of recovery of the population of infected individuals, then the disease would spread,” Dr. Baird says.