ENERGY SECURITYLong-Duration Energy Storage: The Time Is Now
How can US states with aggressive decarbonization goals coupled with federal decarbonization goals have energy when they need it? Long-duration energy storage (LDES) is a likely candidate. Planning for LDES needs to start now.
How can US states with aggressive decarbonization goals coupled with federal decarbonization goals have energy when they need it? Long-duration energy storage (LDES) is a likely candidate. LDES systems are large energy storage installations that can store renewable energy until needed and can provide a much-needed solution for a reliable and decarbonized grid. But planning needs to start now, according to new research from Pacific Northwest National Laboratory (PNNL).
“Defining Long Duration Energy Storage,” a report by Senior Energy Analyst Jeremy Twitchell and Waterpower Advisor Kyle DeSomber from PNNL, explores how the growth of renewable energy generation will require LDES to fill the gap between variable energy generation and customer demands. The report also describes the barriers in current energy planning and procurement processes that prevent planners from recognizing those needs.
“This isn’t something we are going to be able to flex out of like we have in the past,” said Twitchell.
“Things like energy efficiency, demand response, and overbuilding generation capacity will all be part of the solution. But when you look at the sheer size of these mismatches between when energy is produced in a decarbonized grid and when it is consumed, we simply can’t deploy those things at the required scale,” Twitchell added.
The report, published in the Journal of Energy Storage, looks at how the amount of variable energy—such as wind and solar—available for the grid is changing, outlines new definitions for long-term energy storage, and uses an illustrative example of California’s power needs to demonstrate future shortfalls.
Why Does This Matter Now?
In addition to the nonbinding federal goal that all electric generation will be provided from clean energy sources by 2035, many more states have adopted binding or nonbinding decarbonization policies—which means a fundamental change in how energy is produced. For example, 16 states and territories have binding requirements for 100 percent clean or net-zero energy (12 states at 100 percent clean energy, four states at net zero), and six states have non-binding goals for 100 percent clean or net-zero energy (three states at 100 percent clean energy, and three states at net zero).