Startup Turns Mining Waste into Critical Metals for the U.S.

Tackling a Global Problem
Villalón got interested in chemistry and materials science after taking Course 3.091 (Introduction to Solid-State Chemistry) during his first year at MIT. In his senior year, he got a chance to work at Boston Metal, another MIT spinoff that uses an electrochemical process to decarbonize steelmaking at scale. The experience got Villalón, who majored in materials science and engineering, thinking about creating more sustainable metallurgical processes.

But it took a chance meeting with Myers at a 2018 Bible study for Villalón to act on the idea.

“We were discussing some of the major problems in the world when we came to the topic of electrification,” Villalón recalls. “It became a discussion about how the U.S. gets its materials and how we should think about electrifying their production. I was finally like, ‘I’ve been working in the space for a decade, let’s go do something about it.’ Nick agreed, but I thought he just wanted to feel good about himself. Then in July, he randomly called me and said, ‘I’ve got [$7,000]. When do we start?’”

Villalón brought in Chao, his former MIT classmate and fellow materials science and engineering major, and Myers brought Balladon, a former co-worker, and the founders started experimenting with new processes for producing rare earth metals.

“We went back to the base principles, the thermodynamics I learned with MIT professors Antoine Allanore and Donald Sadoway, and understanding the kinetics of reactions,” Villalón says. “Classes like Course 3.022 (Microstructural Evolution in Materials) and 3.07 (Introduction to Ceramics) were also really useful. I touched on every aspect I studied at MIT.”

The founders also received guidance from MIT’s Venture Mentoring Service (VMS) and went through the U.S. National Science Foundation’s I-Corps program. Sadoway served as an advisor for the company.

After drafting one version of their system design, the founders bought an experimental quantity of mining waste, known as red sludge, and set up a prototype reactor in Villalón’s backyard. The founders ended up with a small amount of product, but they had to scramble to borrow the scientific equipment needed to determine what exactly it was. It turned out to be a small amount of rare earth concentrate along with pure iron.

Today, at the company’s refinery in Woburn, Phoenix Tailings puts mining waste rich in rare earth metals into its mixture and heats it to around 1,300 degrees Fahrenheit. When it applies an electric current to the mixture, pure metal collects on an electrode. The process leaves minimal waste behind.

“The key for all of this isn’t just the chemistry, but how everything is linked together, because with rare earths, you have to hit really high purities compared to a conventionally produced metal,” Villalón explains. “As a result, you have to be thinking about the purity of your material the entire way through.”

From Rare Earths to Nickel, Magnesium, and More
Villalón says the process is economical compared to conventional production methods, produces no toxic byproducts, and is completely carbon free when renewable energy sources are used for electricity.

The Woburn facility is currently producing several rare earth elements for customers, including neodymium and dysprosium, which are important in magnetsCustomers are using the materials for things likewind turbines, electric cars, and defense applications.

The company has also received two grants with the U.S. Department of Energy’s ARPA-E program totaling more than $2 million. Its 2023 grant supports the development of a system to extract nickel and magnesium from mining waste through a process that uses carbonization and recycled carbon dioxide. Both nickel and magnesium are critical materials for clean energy applications like batteries.

The most recent grant will help the company adapt its process to produce iron from mining waste without emissions or toxic byproducts. Phoenix Tailings says its process is compatible with a wide array of ore types and waste materials, and the company has plenty of material to work with: Mining and processing mineral ores generates about 1.8 billion tons of waste in the U.S. each year.

“We want to take our knowledge from processing the rare earth metals and slowly move it into other segments,” Villalón explains. “We simply have to refine some of these materials here. There’s no way we can’t. So, what does that look like from a regulatory perspective? How do we create approaches that are economical and environmentally compliant not just now, but 30 years from now?”

Zach Winn is a writer at the Massachusetts Institute of Technology. This article is reprinted with permission of MIT News.