-
Reflections on Iran’s Production of 60% Enriched Uranium
As of about June 14, Iran had reportedly produced 6.5 kg 60% enriched uranium (hexafluoride mass) or 4.4 kg uranium mass only. Iran has produced 60% enriched uranium at an average daily rate of 0.126 kg/day since May 22. Iran’s activity must be viewed as practicing breakout to make enriched uranium for use in nuclear weapons.
-
-
Use of Radioactive Materials in Commercial Applications Has Increased
The use of high-risk radioactive materials in medical, research, and commercial applications has increased by about 30 percent in the U.S. in the last 12 years, and the government should improve security, tracking, and accountability to reduce health and security risks — while also supporting the development of nonradioactive alternatives to replace them — says a new report.
-
-
IAEA Warns on North Korea and Iran
IAEA Director Rafael Grossi issued dire warnings, saying Pyongyang may be reprocessing plutonium and that Iran’s lack of compliance is hurting prospects for salvaging the JCPOA (the 2015 nuclear deal). Pyongyang has continued to pursue its nuclear ambitions since that time and detonated its last nuclear device in 2017, while working with Iran was “becoming increasingly difficult.”
-
-
New Material Could Aid in Nuclear Nonproliferation
A newly discovered quasicrystal that was created by the first nuclear explosion at Trinity Site, N.M., on July 16, 1945, could someday help scientists better understand illicit nuclear explosions and curb nuclear proliferation. The newly discovered material was formed accidentally in the blast of the first atomic bomb test, which resulted in the fusion of surrounding sand, the test tower, and copper transmission lines into a glassy material known as trinitite.
-
-
Iran Nuclear Inspection Deal with UN Watchdog Extended by One Month
Iran and the UN’s nuclear watchdog say they have agreed to extend by one month an agreement to monitor Tehran’s nuclear activities, a move that will give more time for ongoing diplomatic efforts to salvage the country’s tattered nuclear deal with world powers.
-
-
Nuclear Terrorism Could Be Intercepted by Neutron-Gamma Detector
Scanning technology aimed at detecting small amounts of nuclear materials was unveiled by scientists. The technology can be used in airports and seaports for routine inspection of passengers and goods.
-
-
Retaining Knowledge of Nuclear Waste Management
Sandia National Laboratories have begun their second year of a project to capture important, hard-to-explain nuclear waste management knowledge from retirement-age employees to help new employees get up to speed faster. The project has experts share their experience with and knowledge of storage, transportation, and disposal with next generation scientists.
-
-
Ultrasensitive Measurements Detect Nuclear Explosions
Imagine being able to detect the faintest of radionuclide signals from hundreds of miles away. Scientists have developed a system which constantly collects and analyzes air samples for signals that would indicate a nuclear explosion, perhaps conducted secretly underground. The system can detect just a small number of atoms from nuclear activity anywhere on the planet. In terms of sensitivity, the capability – in place for decades – is analogous to the ability to detect coronavirus from a single cough anywhere on Earth.
-
-
Catching Nuclear Smugglers: Fast Algorithm Enable Cost-Effective Detectors at Borders
Nations need to protect their citizens from the threat of nuclear terrorism. Nuclear security deters and detects the smuggling of special nuclear materials—highly enriched uranium, weapons-grade plutonium or materials that produce a lot of radiation—across national borders. A new algorithm could enable faster, less expensive detection of weapons-grade nuclear materials at borders, quickly differentiating between benign and illicit radiation signatures in the same cargo.
-
-
Iran’s Nuclear “Breakout” Time Reduced to 3-4 Months
In May 2018, when President Trump announced that the United States was withdrawing from the 2015 Iran nuclear deal, Iran “breakout” time was estimated to be 12-16 months. Breakout is defined as the time Iran would need to produce 25 kilograms of weapon-grade uranium (WGU), enough for a nuclear weapon. A new report says that Iran’s breakout time now is 3.1 to 4.6 months.
-
-
How Lasers Can Help with Nuclear Nonproliferation Monitoring
Scientists developed a new method showing that measuring the light produced in plasmas made from a laser can be used to understand uranium oxidation in nuclear fireballs. This capability gives never-before-seen insight into uranium gas-phase oxidation during nuclear explosions. These insights further progress toward a reliable, non-contact method for remote detection of uranium elements and isotopes, with implications for nonproliferation safeguards, explosion monitoring and treaty verification.
-
-
Lasers to Detect Weapons-Grade Uranium from Afar
It’s hard enough to identify nuclear materials when you can directly scan a suspicious suitcase or shipping container. But if you can’t get close? A technique for detecting enriched uranium with lasers could help regulators sniff out illicit nuclear activities from as far as a couple of miles away.
-
-
Bolstering Realistic Radiation Training
The Radiation Field Training Simulator (RaFTS) technology provides a first responder training solution that can be used to protect against acts of radiological or nuclear terrorism and to deal with their subsequent aftermath.
-
-
Safe, Fast Radionuclide Detection
In the event of a radiological release, such as from an improvised nuclear device, immediately assessing the threat to public safety would be critical. Rapid detection of radioactive materials can save lives, reduce the environmental impact of such an event and save taxpayer dollars. Current hand-held detection methods, however, are unreliable at detecting very low levels of alpha radiation from actinides, such as uranium, due to environmental influences.
-
-
Smaller Detection Device for Nuclear Treaty Verification, Archaeology Digs
Most nuclear data measurements are performed at accelerators large enough to occupy a geologic formation a kilometer wide, like the Los Alamos Neutron Science Center located on a mesa in the desert. But a portable device that can reveal the composition of materials quickly on-site would greatly benefit cases such as in archaeology and nuclear arms treaty verification.
-