Smart clothsAntenna-equipped garments here

Published 23 August 2011

To make communications devices more reliable, researchers are working on incorporating radio antennas directly into clothing, using plastic film and metallic thread; the new antenna design has a range four times larger than that of a conventional antenna worn on the body — one that is used by American soldiers today

The next generation of communications systems could be built with a sewing machine. To make communications devices more reliable, Ohio State University researchers are working on incorporating radio antennas directly into clothing, using plastic film and metallic thread.

In the current issue of the journal IEEE Antennas and Wireless Propagation Letters, they report a new antenna design with a range four times larger than that of a conventional antenna worn on the body — one that is used by American soldiers today.

 

“Our primary goal is to improve communications reliability and the mobility of the soldiers,” said Chi-Chih Chen, a research associate professor of electrical and computer engineering at Ohio State. “But the same technology could work for police officers, fire fighters, astronauts – anybody who needs to keep their hands free for important work.”

An Ohio State University release reports that for typical foot soldiers, mobility and communications are often at odds. An antenna can be a large and unwieldy addition to an already heavy load.

The idea of embedding communications devices in clothing to address this problem is not new, Chen explained. The Ohio State system takes elements from previous research and combines them in a new way, with the addition of a unique computer control device that lets multiple antennas work together in a single piece of clothing.

The result is a communications system that can send and receive signals in all directions, even through walls and inside a building, without a need for the wearer to carry an external antenna.

John Volakis, the Roy & Lois Chope Chair Professor and Director of the ElectroScience Laboratory at Ohio State, found a common analogy for the new design.

“In a way, we’re doing what’s already been done on a cell phone. You don’t see cell phones with external antennas anymore, because the antenna is part of the body of the phone,” Volakis said.

When antennas make contact with the human skin, however, the body tends to absorb radio signals and form a short circuit — a fact driven home by the recent difficulties with the antenna placement on the iPhone 4. Also, if an antenna is improperly placed, a person’s body can block it when he or she moves against a wall or other obstacles.

The Ohio State system overcomes these problems by surrounding the body with several antennas that work together to transmit or receive a signal, no