Antenna-equipped garments here

matter which way a person is facing. An integrated computer control device senses body movement and switches between the antennas to activate the one with the best performance given the body’s position.

The engineers created a prototype antenna by etching thin layers of brass on a commercially available plastic film, called FR-4. The film is light and flexible, and can be sewn onto fabric.

They attached it into a vest at four locations — chest, back, and both shoulders. The computer controller — a metal box a little smaller than a credit card and an inch thick — was worn on a belt.
In laboratory tests, the experimental antenna system provided significantly greater signal strength compared to a conventional military “whip” antenna, enabling a range of communications four times larger.
Perhaps most importantly, the new antenna system worked in all directions, even as researchers tested it inside the hallways of the ElectroScience Lab, where doors and windows would normally interfere with the signal. Key to the technology was the engineers’ development of network communications coding to coordinate the signals among the antennas. Doctoral student Gil-Young Lee developed a computer module to make the antenna control automatic. Lee, Chen, and Volakis co-authored the IEEE paper with Dimitrios Psychoudakis, senior research associate at the ElectroScience Lab.

 

The release notes that they are partnering with an antenna design company, Applied EM of Hampton, Virginia, to commercialize the research, which was funded by a Small Business Innovation Research grant.

Chen currently estimates that the antenna systems, as demonstrated in the prototype, would cost $200 per person to implement, but mass production would bring that cost significantly down.

 

In the meantime, the engineers are working on printing antennas directly onto clothing, and embroidering antennas into clothing with metallic threads. A typical home sewing machine is now part of their laboratory equipment, and early tests have shown that the swirly designs they’ve embroidered into fabrics such as cotton — and even taffeta — can work as functional antennas.

That’s why Volakis envisions the technology to be adaptable for the general public. The elderly or disabled could wear clothing that would let them communicate in case of emergency, without the stigma they might feel in wearing a more visible assistive device.

“Imagine a vest or shirt, or even a fancy ball gown made with this technology,” he said, scrunching a sample of embroidered taffeta in his hand. “The antennas would be inconspicuous, and even attractive. People would want to wear them.”