Bi-plane to revive supersonic travel

Each wing of the design, when seen from the side, is shaped like a flattened triangle, with the top and bottom wings pointing toward each other. The configuration, according to his calculations, cancels out shock waves produced by each wing alone.

The design lacks lift, however: The two wings create a very narrow channel through which only a limited amount of air can flow. When transitioning to supersonic speeds, the channel, Wang says, could essentially “choke,” creating incredible drag. While the design could work beautifully at supersonic speeds, it can’t overcome the drag to reach those speeds.

The release notes that to address the drag issue, Wang, Hu and Jameson designed a computer model to simulate the performance of Busemann’s biplane at various speeds. At a given speed, the model determined the optimal wing shape to minimize drag. The researchers then aggregated the results from a dozen different speeds and 700 wing configurations to come up with an optimal shape for each wing.

They found that smoothing out the inner surface of each wing slightly created a wider channel through which air could flow. The researchers also found that by bumping out the top edge of the higher wing, and the bottom edge of the lower wing, the conceptual plane was able to fly at supersonic speeds, with half the drag of conventional supersonic jets such as the Concorde. Wang says this kind of performance could potentially cut the amount of fuel required to fly the plane by more than half.

“If you think about it, when you take off, not only do you have to carry the passengers, but also the fuel, and if you can reduce the fuel burn, you can reduce how much fuel you need to carry, which in turn reduces the size of the structure you need to carry the fuel,” Wang says. “It’s kind of a chain reaction.”

The team’s next step is to design a three-dimensional model to account for other factors affecting flight. While the MIT researchers are looking for a single optimal design for supersonic flight, Wang points out that a group in Japan has made progress in designing a Busemann-like biplane with moving parts: The wings would essentially change shape in mid-flight to attain supersonic speeds.

“Now people are having more ideas on how to improve [Busemann’s] design,” Wang says. “This may lead to a dramatic improvement, and there may be a boom in the field in the coming years.”