Airships offer a solution for aviation’s future challenges

A paper detailing the Lincoln group’s initial findings was previously published in the Journal of Aerospace Engineering.

It described the energy systems and presented various design options that could be adopted for airships, particularly highlighting the issues of day/night operation and its impact on the on-board energy storage systems.

The project has moved on significantly since then with a revised approach to the energy harvesting, distribution and storage utilizing a modular approach to simplify future scaling and address system integrity under failure conditions.

Tim Smith, Senior Research Fellow at the Lincoln School of Engineering, said: “While the concept of a feeder-cruiser arrangement for airships is not entirely novel, the projected scale and operating altitude of the proposed MAAT is unprecedented. Operation is based on a large-scale ‘cruiser’ ship at high altitudes of around 15km, at airspeeds of up to 200km/h for extended periods, on pan European routes along which there exist exchange points where VTOL ‘feeder’ airships operate from ground stations rendezvousing and docking with the cruiser in order to exchange passengers and freight. The underlying concept is to have multiple feeders docking with the cruiser.”

It is forecast that by 2020 the number of aircraft passengers will reach 400 million. The movement of freight by air is expected to increase by more than 340 percent over the next twenty years. During the same period congestion at many of the U.K.’s airports will squeeze out cargo operations because of economic and environmental reasons. Consequently, if the market demand for air freight is to be met, either there will have to be significant investment in new airport infrastructure or alternative transport forms need to be considered.

MAAT would present lower costs of transportation than any other current transport system, as it does not require fuelling and its vertical take-offs would reduce delivery times and free-up runway space across the globe. Also, silent landing and take-off operations would reduce the environmental impact of air travel allowing 24-hour operation within busy cities.

While MAAT (and other airship concepts) are not intended to replace conventional aircraft or other forms of transport, they are expected to provide a much needed alternative that do not require the large infrastructure investments typical of new airports, railways and roads.

Tim Smith added: “The design of an all-electric airship is demanding, as by its very nature it is unforgiving as increasing efficiency invariably increases weight which impacts the size, which impacts drag and so on. The greatest challenge has been managing the electrical systems efficiency and weight, thus preventing the spiral — this will be a continuing challenge.”

The School of Engineering’s involvement in this global consortium reflects its dedication to driving innovation in the development of green transportation.

MAAT is funded by the Seventh Framework Program of the EU.

— Read more in Tim Smith et al., “Energy harvesting and power network architectures for the multibody advanced airship for transport high altitude cruiser–feeder airship concept,” Journal of Aerospace Engineering 227, no. 4 (April 2013): 586-98 (doi: 10.1177/0954410012469319)