AliensTo find life beyond Earth,"take off the blinkers": Expert
Is there life beyond Earth? Recent discoveries point to tantalizing possibilities. But to understand the possibilities, we have to do one important thing: Stop thinking that life as we know it – that which depends on oxygen – is the only kind of life.
Is there life beyond Earth?
Recent discoveries point to tantalizing possibilities.
But to understand the possibilities, we have to do one important thing: Stop thinking that life as we know it – that which depends on oxygen – is the only kind of life.
“If there’s one thing we’ve learned from this planet of ours, it’s that it’s very easy to fall into paradigms and assume that what we know is in fact the limit,” says the University of Toronto’s Barbara Sherwood Lollar. “Sometimes we define what we go looking for by what we already know and, oddly enough, we can actually miss things entirely.”
Sherwood Lollar is a University Professor of geology and Canada Research Chair in Isotopes of the Earth and Environment. She was also the chair of the committee that recently published An Astrobiology Science Strategy for the Search for Life in the Universe. It is a year-in-the-making report, commissioned by NASA, to recommend an approach to finding life beyond Earth in a planned, strategic and open-minded manner.
“Our work was to survey the landscape, identify discoveries and recommend areas of new direction,” says Sherwood Lollar. The report is part of a “grassroots process” that leads into the National Academies of Science, Engineering and Medicine’s decadal surveys, where science communities map out what should be focused on over the next decade.
Toronto notes that the committee’s overarching approach is to use the fascinating discipline of astrobiology – the study of the origin, evolution, distribution and nature of life in the universe.
“With a definition like that,” says Sherwood Lollar, “astrobiology is immensely interdisciplinary. To search for life beyond Earth, we need to try to understand the life and death of planets and their star systems, such as the influence of the sun on our solar system. And to do that, you need heliophysics, astronomy, astrophysics, biology, microbiology and geology, as well as advanced engineering and technology. And we will need to be able to interpret huge amounts of data, which is where machine learning and artificial intelligence will be essential.”
With all of these possibilities still to explore, Sherwood Lollar and the committee have recommended that the search for life take a variety of forms of life into consideration.
“We need to go broad in thinking about the search for life in the universe. There might be oxygen in a planet’s atmosphere, but that assumes life will be like life on Earth, resulting from photosynthesis. But life can survive through other metabolic strategies.”