Grid Resilience Balance of Power—Building a Resilient Electric Grid
Events such as blackouts and outages are increasing in frequency as the nation’s infrastructure ages and climate change leads to extreme weather events. Hotter, wetter summers and harsher winters require more reliance on heating and cooling utilities, placing higher stress on the nation’s electric grid. Newtechnology can ‘help keep the lights on’ during emergencies.
In early September, Hurricane Ida caused a massive blackout, leaving New Orleans in the dark for more than two days. A month before Ida, Tropical Storm Henri cut power to 100,000 households in Rhode Island. The wildfires in the western United States are common sources of blackouts in California. And earlier this year in Central Texas, harsh winter conditions led to a breakdown of the state’s electric grid, leaving one million people without heat and electricity for days.
These types of events are increasing in frequency as the nation’s infrastructure ages and climate change leads to extreme weather events. Hotter, wetter summers and harsher winters require more reliance on heating and cooling utilities, placing higher stress on the nation’s electric grid. For nearly a decade and a half, the Science and Technology Directorate (S&T) has teamed up with industry and one of the nation’s largest (and windiest) cities to study how technology can ‘help keep the lights on’ during emergencies. This fall, S&T and its partners announced the fruits of this labor: the successful installation and operation of the Resilient Electric Grid (REG) system in Chicago.
How the Electric Grid Works
The electric grid is a complex network that spans the creation of electricity at a power generation station to the delivery of electricity to the end user. To get from the generation site to the end user, often several (possibly hundreds of) miles away, electricity travels through the transmission system, which converts the very high voltage electricity generated by the power plant to lower voltages. The electricity is further stepped down in voltage through the distribution network as it gets closer to homes, business, and other facilities. Major urban communities have multiple distribution level substations throughout the city to meet the electrical power needs of its population.
Ideally, these distribution substations would be interconnected, so if one substation fails for any reason, another can step in and provide electricity—like driving on system of highways, streets, and roads where you have multiple routes that can get you to the same destination. In reality, however, distribution substations are not interconnected. This is a designed safety feature in the grid so that an issue at one substation, such as a fault current (a large spike in electric current) doesn’t cascade down through the system and impact other substations.