ELECTRIC GRIDSmart Electric Grid to Power Our Future

Published 27 January 2022

A novel plan that offers partnership in keeping the United States electric grid stable and reliable could be a win-win for consumers and utility operators.

A novel plan that offers partnership in keeping the United States electric grid stable and reliable could be a win-win for consumers and utility operators. 

The largest ever simulation of its kind, modeled on the Texas power grid, concluded that consumers stand to save about 15 percent on their annual electric bill by partnering with utilities. In this system, consumers would coordinate with their electric utility operator to dynamically control big energy users, like heat pumps, water heaters and electric vehicle charging stations.

This kind of flexible control over energy supply and use patterns is called “transactive” because it relies on an agreement between consumers and utilities. But a transactive energy system has never been deployed on a large scale, and there are a lot of unknowns. That’s why the Department of Energy’s Office of Electricity called upon the transactive energy experts at Pacific Northwest National Laboratory to study how such a system might work in practice. The final multi-volume report was released today. 

Hayden Reeve, a PNNL transactive energy expert and technical advisor, led a team of engineers, economists and programmers who designed and executed the study. 

“Because Texas’s grid is quite representative of the nation’s energy system, it not only enabled the modeling and simulation of transactive concepts but provided a reliable extrapolation of the results and potential economic impacts to the broader United States grid and customers,” he said.

The simulation showed that if a transactive energy system were deployed on the Electric Reliability Council of Texas (ERCOT) grid, peak loads would be reduced by 9 to 15 percent. That savings could translate to economic benefits of up to $5 billion annually in Texas alone, or up to $50 billion annually if deployed across the entire continental United States. The savings would equal the annual output of 180 coal-fired power plants nationally.

Cutting the Brown Out
By now, most people have experienced or witnessed how weather extremes or natural disasters can wreak havoc on our current power distribution systems. That vulnerability is magnified by our reliance on a few centralized power sources and a grid system that sometimes struggles to match supply with demand. Further, decarbonization of the electric grid will mean that more and more power will come from different kinds of renewable energy sources, like wind and solar. So, avoiding sudden spikes or dips—power brown or black outs—becomes paramount.