Making Drones Suitable for Cities

Non-GPS Options
Drones need to know exactly where they are at all times. For that, UAVs currently rely on satellites, mostly the US Global Positioning System, or GPS. Another alternative to GPS is Europe’s Galileo network.

DELOREAN is also testing Galileo’s potential for drones.

While led by Pildo Labs, the project has featured an international consortium whose members include France-based aircraft manufacturer Airbus, Spanish postal-servicer provider Correos and the European Organization for the Safety of Air Navigation, or Eurocontrol, in Belgium. 

A challenge for satellite tracking in urban areas is that signals might be deflected or otherwise hindered by buildings. Galileo will help avoid such disruptions because of the waveform and structure of its signals, according to Soley.

In addition, Galileo is pioneering new services that could pinpoint drones’ locations with higher accuracy – something DELOREAN tested in Benidorm.

Furthermore, Galileo adds a layer of security. An authentication service that allows the drone to verify whether the satellite signal is real would counter any future efforts by criminal groups to misdirect UAVs and steal their contents through fake signals, according to Soley.

Airborne Parcel Deliveries
If experiments of the kinds conducted by DELOREAN prove successful, many applications could open up.

While drones are already in use over cities, it is often in small-scale operations by local authorities. Police departments, for one, use them to monitor crowds or track speeding cars.

‘There are limitations on drone flights and you need to close the area,’ said Soley. ‘At the technical level, however, the flights are quite easy to handle.’

The next step could be mass urban air delivery. No more vans zigzagging through city streets with all the congestion and pollution.

Instead, fleets of drones would drop off packages across town. Companies like Amazon are already rolling out these services in limited areas.

‘Logistics will, I think, be one of the most promising uses of drones,’ said Soley.

Self-Flying Craft
An EU-funded project called LABYRINTH is tackling the challenge of ensuring that autonomous drones keep track of each other.

Autonomous drones require no ground-based human pilots, who are generally needed for the current generation of UAVs. 

‘In the future, those drones will be operated autonomously – they will fly themselves,’ said Luis Moreno Lorente, the project coordinator and a professor of systems engineering and automation at the University Carlos III of Madrid in Spain. ‘But if you want to do that safely, you need to know exactly where each one of them is located.’

LABYRINTH, which is due to end in May after three years, is developing software that acts as an air traffic control system for drones. The 3D position of each is tracked and the aircraft then relays this information to other drones in the vicinity so they don’t crash into each other.

Similarly, if a drone faces technical troubles – say one of its motors fails – it needs to be able to direct other UAVs away from it.

‘Before businesses like urban air delivery can develop, we first need safety,’ said Moreno Lorente. ‘That’s what we’re building now.’

Together, LABYRINTH and DELOREAN are helping to clear the way for a future in which large numbers of drones fly over cities.

‘It’s just a matter of time before they do,’ said Moreno Lorente.

Tom Cassauwersis a Belgian freelance journalist and content writer. This article is published courtesy of Horizon, the EU research and innovation magazine.