AI-enabled Control System Helps Autonomous Drones Stay on Target in Uncertain Environments
Finding the Right Algorithm
Typically, a control system incorporates a function that models the drone and its environment, and includes some existing information on the structure of potential disturbances. But in a real world filled with uncertain conditions, it is often impossible to hand-design this structure in advance.
Many control systems use an adaptation method based on a popular optimization algorithm, known as gradient descent, to estimate the unknown parts of the problem and determine how to keep the drone as close as possible to its target trajectory during flight. However, gradient descent is only one algorithm in a larger family of algorithms available to choose, known as mirror descent.
“Mirror descent is a general family of algorithms, and for any given problem, one of these algorithms can be more suitable than others. The name of the game is how to choose the particular algorithm that is right for your problem. In our method, we automate this choice,” Azizan says.
In their control system, the researchers replaced the function that contains some structure of potential disturbances with a neural network model that learns to approximate them from data. In this way, they don’t need to have an a priori structure of the wind speeds this drone could encounter in advance.
Their method also uses an algorithm to automatically select the right mirror-descent function while learning the neural network model from data, rather than assuming a user has the ideal function picked out already. The researchers give this algorithm a range of functions to pick from, and it finds the one that best fits the problem at hand.
“Choosing a good distance-generating function to construct the right mirror-descent adaptation matters a lot in getting the right algorithm to reduce the tracking error,” Tang adds.
Learning to Adapt
While the wind speeds the drone may encounter could change every time it takes flight, the controller’s neural network and mirror function should stay the same so they don’t need to be recomputed each time.
To make their controller more flexible, the researchers use meta-learning, teaching it to adapt by showing it a range of wind speed families during training.
“Our method can cope with different objectives because, using meta-learning, we can learn a shared representation through different scenarios efficiently from data,” Tang explains.
In the end, the user feeds the control system a target trajectory and it continuously recalculates, in real-time, how the drone should produce thrust to keep it as close as possible to that trajectory while accommodating the uncertain disturbance it encounters.
In both simulations and real-world experiments, the researchers showed that their method led to significantly less trajectory tracking error than baseline approaches with every wind speed they tested.
“Even if the wind disturbances are much stronger than we had seen during training, our technique shows that it can still handle them successfully,” Azizan adds.
In addition, the margin by which their method outperformed the baselines grew as the wind speeds intensified, showing that it can adapt to challenging environments.
The team is now performing hardware experiments to test their control system on real drones with varying wind conditions and other disturbances.
They also want to extend their method so it can handle disturbances from multiple sources at once. For instance, changing wind speeds could cause the weight of a parcel the drone is carrying to shift in flight, especially when the drone is carrying sloshing payloads.
They also want to explore continual learning, so the drone could adapt to new disturbances without the need to also be retrained on the data it has seen so far.
“Navid and his collaborators have developed breakthrough work that combines meta-learning with conventional adaptive control to learn nonlinear features and the suitable adaptation law from data. Key to their approach is the use of mirror descent techniques that exploit the underlying geometry of the problem and do so automatically. Their work can contribute significantly to the design of autonomous systems that need to operate in complex and uncertain environments,” says Babak Hassibi, the Mose and Lillian S. Bohn Professor of Electrical Engineering and Computing and Mathematical Sciences at Caltech, who was not involved with this work.
Adam Zewe is a writer at Massachusetts Institute of Technology. This story is reprinted with permission of MIT News.